• Title/Summary/Keyword: Sulfide mineral

Search Result 130, Processing Time 0.024 seconds

Experimental Study on the Recovery of Useful Minerals Using High Voltage Discharge Shock Pulse (고전압 방전 충격펄스를 이용한 유용광물 회수에 관한 실험적 연구)

  • Cho, Sangho;Jeong, Sangsun
    • Explosives and Blasting
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • Electrical pulse disintegration(ED) is known as an efficient technology for recovering valuable resources by inducing dielectric breakdown in solids to separate mineral interfaces in ores among the crushing technologies by high voltage discharge. In this study, ED crushing experiment and mechanical crushing experiment of sulfide minerals were performed, and SEM analysis and Microfocus X-Ray CT of the crushed product were performed in order to analyze the disintegration characteristics of zinc minerals exist in the sulfide minerals by the shock wave generated in the solid by high voltage discharge.

The Effect of Oxidation/Reduction of Sulfide Mineral on Its Recovery by Flotation (산화(酸化)/환원(還元) 조건(條件)에 따른 황화광물(黃化鑛物)의 부유선별(浮游選別)에 의한 회수성(回收性) 변화(變化))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.12-16
    • /
    • 2007
  • The influence of oxidation on the floatability of sulfide minerals contained in mine failings has been investigated employing chalcopyrite as a target material. The critical surface tension of chalcopyrite was estimated to be about 15.5 dyne/cm based on Zisman plot and the floatability of chalcopyrite was observed to increase with the concentration of collector. The enhanced float-ability of chalcopyrite at its initial stage of oxidation was considered to be due to the transformation of disulfide to elemental sulfur and the decrease in its floatability at further oxidation was presumably caused by the formation of sulfate and/or disulfur trioxide from elemental sulfur. When the oxidized chalcopyrite was reduced, its floatability was increased and the variation of the critical surface tension of chalcopyrite according to tile oxidation/reduction was interpreted by an energy diagram constructed by different bond energies between atoms.

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite (금속환원미생물에 의한 수용액의 산화/환원전위 변화 및 생합성 맥키나와이트의 역할)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon;Lee, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.279-287
    • /
    • 2011
  • In order to identify if bacteria surviving in soils and groundwater can change the oxidation/reduction potential of groundwater, Eh values of solution that contained bacteria were measured for 2 weeks. The Eh values of the solution reacted with sulfate-reducing bacteria decreased from -120 mV to -500 mV in 5 days, and $Desulfuricans$ was superior to $Vulgaris$ in reducing the solution. The Eh value was relatively higher for the solution containing $Shewanella$, iron-reducing bacteria, showing -400 mV. During the Eh decrease by the metal-reducing bacteria, a sulfide mineral such as mackinawite (FeS) started precipitating through the microbial reducing process for sulfate and ferric iron. These results show that the ORP of natrual groundwater may be sensitive to the geomicrobial respiration. In addition, a subsurface environment where groundwater is highly reduced and sulfide minerals are largely biogenerated may be a good place to retard the migration of oxidized radionu-clides by making them precipitated as reduced forms.

Geochemical Occurrence Characteristics of Geogenic Heavy Metals in Korea Evaluated Using Geochemical Map Data (전국 지화학도 자료를 이용한 지질기원 중금속의 지화학적 발생특성)

  • Ahn, Joo Sung;Youm, Seung-Jun;Cho, Yong-Chan;Yim, Gil-Jae;Ji, Sang-Woo;Lee, Jung-Hwa;Lee, Pyeong-Koo;Lee, Jeong-Ho;Shin, Seong-Cheon
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • As environmental criteria items are increased or strengthened, cases of heavy metal contamination by geogenic origin are increasing, and the need to distinguish between natural and anthropogenic origins in soil or groundwater exceeding the standard is increasing. In this study, geochemical occurrences of geogenic heavy metals were identified through statistical processing of the national geochemical map data and evaluation of geochemical characteristics of regions with high geoaccumulation indices. Cobalt, Cr, Cu, Ni, Pb, V, and Zn were targeted for which the national geochemical maps were prepared, and Co, Cr, Ni, and V derived from ultrabasic or ultramafic rocks were classified as factor 1. Copper, Pb and Zn of non-ferrous sulfide origin were classified as factor 2. In particular, enrichment of heavy metals by factor 1 occurs mainly in the serpentine distribution areas of the Chungcheong region, and there is a risk of contamination in neighboring areas. In the case of factor 2, geogenic occurrence is concerned not only in non-ferrous metal mineralization areas such as Taebacksan and Gyeongnam mineralization zones, but also in Au-Ag mineralization areas distributed nationwide.

Physical Properties of Rocks at the Gagok Skarn Deposit (가곡 스카른광상 암석의 물리적 특성)

  • Shin, Seungwook;Park, Samgyu;Kim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.180-189
    • /
    • 2013
  • Geophysical exploration is widely used to develop strategic mineral resources in the world because of its efficient method in detecting mineralized zones in the metallic ore deposit. It is important to understand the physical properties of the stratum so that geophysical data can be more accurately interpreted. This paper is to comprehend physical properties of the rock at the Gagok mine, a typical skarn deposit in Korea. Thus, laboratory tests were conducted on specimens of ore and host rocks which were collected from rock outcrops and drill cores at the Gagok mine. Using the measurement system of rock physical property, we investigated the density, magnetic susceptibility, resistivity, and spectral induced polarization. According to the results, all physical properties of specimens had wide differences depending on contents of ore minerals, which are formed by skarnization. Especially, using the chargeability and time constant from the calculated spectral induced polarization data by the Cole-Cole inversion, we could estimate the volume contents as well as the grain size of the sulfide minerals. Therefore, the spectral induced polarization technique may be considered a useful method when exploring metallic ore deposit with sulfide minerals.

Heavy Metal Retention by Secondary Minerals in Mine Waste Rocks at the Abandoned Seobo Mine (서보광산 폐광석 내 2차 광물에 의한 중금속 고정화)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.177-189
    • /
    • 2003
  • The main purposes of this study are to utilize mineralogical studies such as optical microscope, XRD and SEM/EDS analyses to characterize the oxidation of sulfide minerals and the mechanisms controlling the movement of dissolved metals from waste rocks at the abandoned Seobo mine. Mineralogical research of the waste rocks confirms the presence of anglesite, covellite, goethite, native sulfur and nsutite as secondary minerals, suggesting that these phases control the dissolved concentrations of As, Cu, Fe, Mn, Pb and Zn. The dissolved metals are precipitated, adsorbed and/or coprecipitated with(or within) Fe(Mn)-hydroxides and Mn(Fe)-hydroxides. The main phases of secondary mineral, Fe-hydroxide, can be classified as amorphous or poorly crystalline and more crystallized phases(e.g. goethite) by crystallinity. Amorphous or poorly crystalline Fe-hydroxide has relatively high As contents(9-24 wt.%). This poorly crystalline Fe-hydroxide changes toward more crystallized phase(e.g. goethite) which contains relatively low As(0.6-7.7 wt.%). These results are mainly due to the progressive release of As with the crystallization evolution of the As-trapping poorly crystalline Fe-hydroxides. It is also attributed to the differences of specific surface areas between the poorly crystalline Fe-hydroxides and well crystallized phases. The dissolved metals from waste rocks at Seobo mine area are naturally attenuated by a series of precipitation(as Fe, Mn, Cu, Pb), coprecipitation(Fe, Mn) and adsorption(As, Cu, Pb, An) reactions. The results of mineralogical researches permit to assess the environmental impacts of mine waste rocks in the areas, and can be used as a useful data to lay available mine restoration plan.

Fluid Inclusion Studies of the Fluorite Deposits in Korea (우리나라 형석광상(螢石鑛床)의 유체포유물(流體包有物) 연구(硏究))

  • Park, Hee In
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 1976
  • The flourite in Hwacheon, Hwanggangri and Keumsan district are major fluorite producing areas in Korea. The fluorite deposits of Hwacheon district are wholly fissure filling hydrothermal veins embedded in Precambrian gneiss and schists and Jurassic granites. Also some fluorite deposits are emplaced in felsite whose age is unknown. Emplacement of most fluorite veins of the district are controlled by EW fracture system. Fluorites are generally accompanied to chalcedonic quartz and also kaolinite, montmorillonite, dickite and calcite in parts. Vertical and lateral mineral zonings are not distinct. The fluorite deposits in the Hwanggangri district are wholly embedded in limestone and other calcareous sediments of Paleozoic Yeongweol Group. Most of the fluorite deposits belong to one of two categories which are steeply. dipping veins and gently dipping replacement deposits adjacent to Late Cretaceous(83-90mys) granite bodies. The strikes of fluorite veins of Hwanggangri district mostly occupy the fractures of $N30^{\circ}-40^{\circ}E$ and $N30^{\circ}-40^{\circ}W$ system. Fluorites are accompanied to calcite, milky quartz, chalcedonic quartz, and also montmorillonite, kaolinite in parts. But in some deposits, scheelite, various sulfide minerals and barite are accompanied. Emplacement of fluorite deposits are largely controlled by lithology and structures of this district. In some deposits fluorite veins gradate to scheelite veins and also telescoping of the mineral zones are found in this district. In the Keumsan district, fissure-filled fluorite veins and replacement deposits are mostly emplaced in limestone of Paleozoic Yeongweol Group, late Cretaceous quartz-porphyry, granite and sandstone. Some deposits are emplaced in Precambrian metasediments. Mineralogy and other characteristics of the deposits in this district is similar to those of Hwanggangri district. Fluid inclusion studies reveal the difference of salinities, $CO_2$ contents of ore fluid and temperatures during fluorite mineral deposition in the these districts. In Hwacheon district, ore-fluids were comparatively dilute brine and low $CO_2$ content. Filling temperatures ranges $104^{\circ}C$ to $170^{\circ}C$. In the Chuncheonshinpo mine, most deeply exploited one in this district, salinitles range 0.5-2. 2wt. % NaCl and filling temperatures range from $116^{\circ}C$ to $143^{\circ}C$. In the Hwanggangri district, ore fluids were complex and filling temperature ranges very widly. In the contact metasomatic fluorite deposits, ore fluid were NaCl rich brines with moderate $CO_2$ content and filling temperatures range from $285^{\circ}C$ to above $360^{\circ}C$. Fluids inclusions in tungsten and sulfide minerals bearing fluorite veins show high $CO_2$ content up to 31wt. %. Filling temperature ranges from $101^{\circ}C$ to $310^{\circ}C$. Fluids inclusions In mainly fluorite bearing veins were more dilute brine and low $CO_2$ contents. Filling temperatures range from $95^{\circ}C$ to $312^{\circ}C$. Filling temperature of fluid inclusions of Keumsan district are between $95^{\circ}C$ and $237^{\circ}C$. Data gathered from geologic, mineralogic and fluid inclusion studies reveal that fluorite mineralization in H wacheon district proceeded at low temperature with dilute brine and low $CO_2$ content. In Hwangganri district, fluorite mineralization proceeded by several pulse of chemically distinct ore fluids and formed the mineralogically different type of deposits around cooling granite pluton which emplaced comparatively shallow depth.

  • PDF

Metallurgical study of bronze bells excavated from the Miruksa (temple) site in Iksan (익산 미륵사지 출토 동종의 금속학적 연구)

  • Cho, Nam-chul;Huh, Il-kwon;Kang, Hyung-tae
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.5-22
    • /
    • 2006
  • Mireuksa is a temple that was established in the Baekjea Period and continued around to the 16thcentury. The sites of the temple throughout diverse periods such as the United Shilla Period, KoryuPeriod, and Chosun Period including the one of the early temple in the late Baekjea Period were discovered. In those temple sites, there were lots of diverse artifacts discovered including artifacts in the Bronze Age. In this study, the compositions of four bronze bells excavated from Mireuksa site in Iksan were analyzed and the manufacturing technique of bronze bells was studied through the observation of microstructure. Also, the analytical cases of ancient bronze bells were collected and compared. Furthermore, the provenance study of the bronze bells site was attempted with the Pbisotope ratio. The results aim to offer crucial keys for discovering the aspect of society as well as information about the origin, development, and the route of propagation of ancient technologies. Bronze bell No. 1 showed an unexpected composition as Cu was found 98.5% in it. There were shown twins which were created by annealing and an even phase in the fine grains. It was also shown that bronze bell No. 2 and 4 had a high content of Pb although they showed a similar composition with general bronze bells in terms of Sn content. As shown in the analysis characteristics table of Korean bronze bell of this study, the ancient bronze bell used Pb of which content was limited to 2.12% in general, however, the results showed 15.5% and 13.2% respectively, which is an excessive amount. Asa result of analyzing inclusion in the microstructure of bronze bell No. 2, it was found that sulfide group mineral was used since there appeared S(14.55%). Also, it was proven that $CuFeS_2$ or$Cu_5FeS_4$ was used as a raw material because there was a small amount of Fe. As a result of analyzing inclusion of bronze bell No. 4, the bronze bell sample contained S(13.43%) and it is thought that sulfide group mineral was used, however, it had no Fe. Therefore, it is not connected to $CuFeS_2$ which is the main mineral of Korea. In addition, a strain line was shown with processing in bronze bell No. 2 and 4. As a result of provenance study of bronze bell No. 2 and 4 using the Pb isotope ratio, they or their raw materials are estimated to come from the southern China. Bronze bell No. 3 showed only Cu and Sn, and it is featured with a relatively low amount of Sn(6.63%). The microstructure has only phase, andintergranular corrosion was highly in progress.

  • PDF

Future Deep Ocean Resources and the Technologies for Commercial Development

  • Yamazaki, Tetsuo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.14-20
    • /
    • 2006
  • During the 11 year period of 1995-2005, there was about a 40% increase in the world copper demand mainly because of the Asian economic growth. In the increase, about a half was consumed by China. Most of the China's copper demand increase has been taken place over the final 5-6 years of that period. The growth is expected to continue for several years, and in 10 years or sooner the same situation is expected for India. Copper is the third metal in global demand, but its little abundance in the Earth's crust is not well recognized. From the production rate and the abundance, a copper shortage, or crisis, has a high probability than the other metals. Deep ocean mineral resources such as manganese nodules in the Clarion-Clipperton Fracture Zones, Kuroko-type massive seafloor sulfides (SMS), and cobalt-rich manganese crusts in the EEZ and the high sea areas have big potentials for the future sources. We need to re-evaluate their potentials as copper resources and other metals to realize their developments. The same situation is under progress in the hydro-carbon markets. Methane hydrates that are classified into non-conventional hydro-carbon resources have an important role as the future sources, too.

  • PDF