• Title/Summary/Keyword: Sulfhydryl group

Search Result 76, Processing Time 0.032 seconds

Alteration of PMN Leukocyte Function by the Change of Sulfhydryl Group and Metabolism of Membrane Components (Sulfhydryl기와 세포막 구성성분의 대사 변화에 따른 다형핵 백혈구 기능의 변경)

  • Shin, Jeh-Hoon;Lee, Chung-Soo;Han, Eun-Sook;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.75-85
    • /
    • 1989
  • In opsonized zymosan activated PMN leukocytes, N-ethylamleiamide and $Hg^{++}$, penetrable sulfhydryl group inhibitors, inhibited superoxide generation, NADPH oxidase activity and lysosomal enzyme (lactic dehydrogenase and ${\beta}-glucuronidase$) secretion. P-Chloromercuribenzoic acid and p-chloromercuribenzenesulfonic acid, surface sulfhydryl group inhibitors did not affect superoxide generation but effectively inhibited both NADPH oxidase activity and lysosomal enzyme secretion. During phagocytosis, contents of surface and soluble sulfhydryl groups were gradually decreased with increasing incubation times. N-ethylmaleiamide and $Hg^{++}$ caused a loss of both surface and soluble sulfhydryl groups. P-Chloromercuribenzoic acid and p-chloromercuribenzenesulfonic acid significantly decreased the surface sulfhydryl content but did not after soluble sulfhydryl groups. Cysteine and mercaptopropionylglycine inhibited superoxide generation and lysosomal enzyme secretion. Glutathione had no effect on superoxide generation but remarkably inhibited lactic dehydrogenase release. Suppression of superoxide generation by N-ethylmaleiamide was reversed by cysteine and mercaptopropionyl-glycine but not by glutathione. Inactivation of NADPH oxidase by N-ethylmaleiamide was prevented by glutathione, cysteine or mercaptopropionylglycine. Stimulated superoxide generaion by carbachol was completely abolished by N-ethylrnaleiamide and antagonized by atropine. Thus, the expression of PMN leukocyte response to external stimuli may be associated with the change of sulfhydryl groups content. It is suggested that lysosomal enzyme secretion is influenced by both surface and soluble sulfhydryl groups, whereas superoxide generation by intracellular soluble sulfhydryl groups.

  • PDF

S-Nitrosylation of Sulfhydryl Groups in Albumin by Nitrosating Agents

  • Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 1993
  • The reaction of sulfhydryl groups in human serum ablumin with bacteriostatic and hypotensive notrosating agents such as sodium nitorprusside and sodium nitrite has been examined. The low reactivity of sodium nitroprusside to sulfhydral groups in albumin has been observed and the sterical inaccessilibility of the agent site which sulfhydryl group resides was implicated. The reaction of sodium nitrite with albumin was highly influenced by pH and little reactivity was observed at physiological pH. On the other hand, the reaction between albumin and S-nitrosoglutatione, an intermediate induced from the reaction of glutathione and nitrosating agents, resulted in the rapid decrease of free sulfhydryl groups in albumin. S-Nitrosylation of the sulfhydryl group by S-nitrosoglutathione and the subsequent production of mixed disulfide is the probable route of modification. In the physiological system, S-nitroso-glutathione may act as an active intermediate in expressing reacivity of nitrosating agents to sulfhydryl groups in albumin.

  • PDF

Effect of Dantrolene Sodium on Tissue Sulfhydryl Groups and Glutathione in Rats (Dantrolene Sodium이 간 조직내 Sulfhydryl Group과 Glutathione에 미치는 영향)

  • Kim, Kwang-Kook;Paik, Kwang-Sea;Kang, Bok-Soon
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 1985
  • Dantrolene sodium(DS) is a long acting skeletal muscle relaxant which has been successfully used to control muscle spasticity in patients with various neurological disorders. However, its use is associated with hepatotoxicity. Tissue sulfhydryl group has many important roles for cellular integration and glutathione serves as a substrate for the detoxification metabolism. The purpose of this study were to investigate the effect of DS on tissue sulfhydrl group and glutathione content. Foully albino rats were divided into two groups ; saline treated (control) and DS treated groups. DS dissolved in saline was administered orally. All rats were sacrificed after 7. 14. 21 and 28 days of DS ana saline treatment by dacapitation ana liver was removed for the enzyme preparation. Total and nonprotein sulfhydryl were measured by the method of Sedlak and Lindsay (1968). Total glutathione content was assayed according to the method described by Tietze (1969) and glutathione reductase was assayed according to the method of Racker (1955), The results obtained are summarized as follows : DS administration significantly depressed the total, protein and nonprotein sulfhydryl content in liver. There were significant reduction of both total glutathione content and glutathione reductase activity in liver. On the basis of the above results it may be speculated that the toxicity of DS are well correlated with tissue sulfhydryl content and glutathione reductase activity.

  • PDF

Purification and Some Properties of Arginine Deiminase in Euglena gracilis Z (Euglena gracilis Z로부터 Arginine Deiminase의 정제 및 그의 특성)

  • Park, Bong-Sun;Hirotani, Aiko;Nakano, Yoshihisa;Kitaoka, Shozaburo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.115-125
    • /
    • 1993
  • In Euglena gracilis arginine deiminase was located in the mitochondrial matrix. The highly purified enzyme required $Co^{2+}$ for the enzyme reaction with the $K_m$ value of 0.23 nM, and its optimum pH was 9.7 to 10.3. The molecular weight of the native enzyme protein was 87,000 by gel filtration, and SDS-acrylamide gel electrophoresis showed that the enzyme consisted of two identical subunits with a molecular weight of 48,000. Euglena arginine deiminase was inhibited by sulfhydryl inhibitors, indicating that a sulfhydryl group is involved in the active center of the enzyme. It exhibited negative cooperativity in binding with arginine. $L-{\alpha}-amino-{\beta}-guanidino-propionate$, D-arginine, and L-homoarginine strongly inhibited the enzyme while ${\beta}-guanidinopro-pionate$, ${\gamma}-guanidinobutyrate$, and guanidinosuccinate did not. Considerable inhibition was also observed with citrulline and ornithine. We discuss the effects of the unique properties of the Euglena arginine deiminase on the regulation of arginine metabolism in this protozoon.

  • PDF

Evaluation of Pork Myofibrillar Protein Gel with Pork Skin Gelatin on Rheological Properties at Different Salt Concentrations

  • Lee, Chang Hoon;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.576-584
    • /
    • 2019
  • This study was performed to evaluate the physicochemical properties of myofibrillar protein (MP) gels containing pork skin gelatin at different salt concentrations. MP gels were prepared to the different salt levels (0.15, 0.30, and 0.45 M) with or without 1.0% of pork skin gelatin. Cooking yield (CY), gel strength, shear stress were measured to determine the physical properties, and SDS-polyacrylamide gel electrophoresis, scanning electron microscopy, fourier transform infrared spectroscopy, sulfhydryl group and protein surface hydrophobicity was performed to figure out the structural changes among the proteins. The addition of gelatin into MP increased CYs and shear stress. MP at 0.45 M salt level had the highest CY and shear stress, as compared to MPs at lower salt concentrations. As the salt concentration of MP gels increased, the microstructure became the compact and wet structures, and decreased the amount of ${\alpha}-helix$/unordered structures and ${\beta}-sheet$. MP with gelatin showed a decreased amount of ${\alpha}-helix$/unordered structures and ${\beta}-sheet$ compared to MP without gelatin. The addition of gelatin to MP did not affect the sulfhydryl group, but the sulfhydryl group decreased as increased salt levels. MP mixtures containing gelatin showed a higher hydrophobicity value than those without gelatin, regardless of salt concentration. Based on these results, the addition of gelatin increased viscosity of raw meat batter and CY of MP gels for the application to low salt meat products.

The Effect of Carthami Semen Aquacupuncture on HgCl2-Induced Liver Cell Injury (홍화자약침액(紅花子藥鍼液)이 수은(水銀)에 의한 간세포(肝細胞) 손상(損傷)에 미치는 영향(影響))

  • Park, Jae-young;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Abn, Chang-beobm
    • Journal of Acupuncture Research
    • /
    • v.19 no.5
    • /
    • pp.209-218
    • /
    • 2002
  • Objective : This study was undertaken to examine whether Carthami Semen aquacupuncture (CSA) exerts protective effect against Hg-induced cell injury in rabbit liver. Methods : The cell injury was evaluated by ALT activity and lipid peroxidation was estimated by measuring malondialdehyde (MDA). Results : Hg caused an increase of ALT activity and lipid peroxidation in a dose-dependent-manner over concentrations of 0.1-1 mM, which were prevented by addition of 0.005% CSA. The protective effect of CSA was dose-dependent in concentration range of 0.001 to 0.01%. The increase of ALT activity and lipid peroxidation induced by 0.5 mM Hg were almost completely decreased by addition of 0.01% CSA. When the liver tissues were exposed to 0.5 mM Hg, GSH content was decreased, which was significantly restored by 0.01% CSA. 0.5 mM Hg caused decrease in the amount of total and nonprotein sulfhydryl groups, and 0.01% CSA prevented Hg-induced reduction of nonprotein sulfhydryl group but not protein sulfhydryl group. Conclusions : These results suggest that CSA exerts protective effect against Hg-induced cell injury by antioxidant action resulting from enhancement of nonprotein sulfhydryl group content including GSH in liver.

  • PDF

Inhibition of Dicarboxylate Transport by p-chloromercuribenzoic Acid (PCMB) in Plasma Membrane Vesicles of Rabbit Proximal Tubule

  • Kim, Yong-Keun;Kim, Tae-In;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 1991
  • Effect of a sulfhydryl reagent, p-chloromercuribenzoic acid (PCMB), on the transport of succinate was studied in brush border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit renal cortex. PCMB induced an irreversible inhibition of the $Na^+-dependent$ succinate uptake in a dose-dependent manner with $IC_{50}$ of 55 and $65\;{\mu}M$ in BBMV and BLMV, respectively. The inhibitory effect of PCMB was prevented by a pretreatment of vesicles with dithiothreitol. PCMB did not increase $Na^+$ permeability at concentrations inhibiting succinate uptake. The PCMB inhibition of succinate uptake was due to a change in Vmax, but not in Km. When membrane vesicles were pretreated with PCMB in the presence of unlabelled succinate, the inhibitory effect was significantly reduced. In both BBMV and BLMV, succinate uptake was inhibited by various sulfhydryl reagents with the inhibitory potency of following order: $HgCl_2$>DTNB>PCMBS>PCMB. These results suggest that sulfhydryl groups are essential for dicarboxylate transport and that they may be located at or near substrate binding sites of the transporters in renal brush border and basolateral membranes.

  • PDF

Studies on Active Center of $(Na^{+}+K^{+})-ATPase$ in Rabbit Red Cell Membranes (토끼 적혈구막의 $(Na^{+}+K^{+})-ATPase$의 active center에 관한 연구)

  • Lim, Bo-Sang
    • The Korean Journal of Physiology
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1975
  • The present experiments were carried out to investigate the active center of sodium and potassium ion activated adenosine triphosphatase. An ATPase, activated by sodium ion Plus potassium ion in the presence of magnesium ion, and inhibited by ouabain, has been obtained from rabbit red cell ghosts. The ATPase activity was measured by inorganie phosphate released from ATP. From this values of the measured inorganic phosphate, the activity of ATPase was calculated. The following results were observed. 1. The activity of $(Na^++K^+)-ATPase$ is inhibited by ouabain. This effect may not be due to an effect on sulfhydryl groups, amino groups, carboxyl groups, imidazole groups and hydroxyl groups. 2. The $(Na^++K^+)$-activated enzyme system is inhibited by p-chloromercuribenzoate and by d nitroflurobenzene, and this effect may be due to an effect on sulfhydryl groups. These results indicate that the sulfhydryl groups is attached to sodium-potassium dependent adenosine triphosphate, an aspect of the pump. 3. The $(Na^++K^+)-activated$ enzyme system is inhibited by maleic anhydride and this inhibition is reversed by lysine. This Seems to indicate that the active center of this enzyme is the amino groups. 4. The $(Na^++K^+)$-activated enzyme system is inhibited by iodoacetamide and this inhibition is reversed by the simultaneous present of cysteine and aspartic acid in the suspension medium. This result indicates that this enzyme contains sulfhydryl groups and carboxyl groups. 5. The $(Na^++K^+)-ATPase$ activity is accelerated by adrenaline and this effect is abolished by aspartic acid. This effect of aspartic acid indicate that carboxyl group might be involved in the hydrolysis of ATP by the enzyme system. On the hydrolysis of ATP by the enzyme system. On the basis of these experiments it f·as suggested that the active center of $(Na^++K^+)-activated$ ATPase contains sulfhydryl groups, amino groups and carboxyl groups.

  • PDF

Chemical Modification of Cysteine Residues in Hafnia alvei Aspartase by NEM and DTNB

  • Shim, Joon-Bum;Kim, Jung-Sung;Yoon, Moon-Young
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.113-118
    • /
    • 1997
  • Aspartase from Hafnia alvei was inactivated by N-ethylmaleimide (NEM) and 5,5' -Dithiobis-(2-znitrobenzoic acid) (DTNB) following pseudo-first order kinetics. Their apparent reaction orders were 0.83 and 0.50 for NEM and DTNB modifications, respectively, indicating that inactivation was due to a sulfhydryl group in the active site of aspartase and participation of the sulfhydryl group in an essential step in the catalytic reaction. When aspartase was modified by DTNB, the enzyme activity was restored by dithiothreitol treatment, indicating that cysteine residuetsl islarel possibly at or near the active site. The pH-dependence of the inactivation rate by NEM suggested that an amino acid residue having pK value of 8.3 was involved in the inactivation. When aspartase was incubated with NEM and L-aspartate together, L-aspartate markedly protected the enzyme from inactivation by NEM, but the other reagents used did not.

  • PDF

The Study of $NF-{\kappa}B(P50)$ Suppression mechanism with main Component of Bee Venom and Melittin on Human Synoviocyte

  • Kwon, Soon-Jung;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2005
  • Melittin,cationic 26-amino acid, is the principal component of the bee venom (BV) which has been used for treatment of inflammatory disease such as arthritis rheumatism NF-kB is activated by subsequent release of inhibitory IkB via activation of a multisubunit IkB kinase (IKK). We previously found that melittin bind to the sulfhydryl group of p50, a subunit of NF-kB. Since sulfhydryl group is present in kinase domain of IKKa and IKKb, melittin could modify IKK activity by protein-protein interaction. We therefore examined effect of melittin on IKK activities in sodium nitroprusside (SNP)-stimulated synoviocyte obtained from RA patients. Melittin suppressed the SNP-induced release of IkB resulted in inhibition of DNA binding activity of NF-kB and NF-kB-dependent luciferase activity. Consistent with the inhibitory effect on NF-kB activation, IKKa and IKKb activities were also suppressed by melittin. Surface plasmon resonance analysis realized that melitin binds to IKKa $(Kd\;=\;1.34{\times}10-9M)$ and IKKb$(Kd\;=\;1.0{\times}10-9M)$. Inhibition of IKKa and IKKb resulted in reduction of the SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of melittin on the IKKs activities, binding affinity of melittin to IKKs, and NO and PGE2 generation were blocked by addition of reducing agents dithiothreitol and glutathione. In addition, melittin did not show inhibitory effect in the transfected Synoviocytes with plasmid carrying dominant negative mutant IKKa (C178A) and IKKb (C179A). These results demonstrate that melittin directly binds to sulfhydryl group of IKKs resulting in IkBrelease, thereby inhibits activation of NF-kB and expression of genes involving in the inflammatory responses.

  • PDF