Chemical Modification of Cysteine Residues in Hafnia alvei Aspartase by NEM and DTNB

  • Received : 1996.12.20
  • Published : 1997.03.31

Abstract

Aspartase from Hafnia alvei was inactivated by N-ethylmaleimide (NEM) and 5,5' -Dithiobis-(2-znitrobenzoic acid) (DTNB) following pseudo-first order kinetics. Their apparent reaction orders were 0.83 and 0.50 for NEM and DTNB modifications, respectively, indicating that inactivation was due to a sulfhydryl group in the active site of aspartase and participation of the sulfhydryl group in an essential step in the catalytic reaction. When aspartase was modified by DTNB, the enzyme activity was restored by dithiothreitol treatment, indicating that cysteine residuetsl islarel possibly at or near the active site. The pH-dependence of the inactivation rate by NEM suggested that an amino acid residue having pK value of 8.3 was involved in the inactivation. When aspartase was incubated with NEM and L-aspartate together, L-aspartate markedly protected the enzyme from inactivation by NEM, but the other reagents used did not.

Keywords

References

  1. Biochemistry v.7 Bada, J.L.;Miller, S.L. https://doi.org/10.1021/bi00850a014
  2. Korean Biochem. J. (presently J. Biochem. Mol. Biol.) v.26 Cho, Y.D.;Lee, K.J.
  3. Biochemistry v.20 Cook, P.F.;Blanchard, J.S.;Cleland, W.W.
  4. Data for Biochemical Research Dawson, R.M.C.;Elliot, D.C.
  5. Biochemistry v.11 Dougherty, T.B.;Williams, V.R.;Younathan, E.S. https://doi.org/10.1021/bi00763a017
  6. Biochemistry v.27 Falzone, C.J.;Karsten, W.E.;Conley, J.D.;Viola, R.E. https://doi.org/10.1021/bi00426a004
  7. J. Chem. Soc. v.79 Harden, A. https://doi.org/10.1039/CT9017900610
  8. J. Biochem. v.98 Ida, N.;Tokushige, M. https://doi.org/10.1093/oxfordjournals.jbchem.a135336
  9. Anal. Biochem. v.147 Karsten, W.E.;Hunsley, J.R.;Viola, R.E. https://doi.org/10.1016/0003-2697(85)90280-5
  10. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Kim, S.K.;Choi, J.H.;Yoon, M.Y.
  11. J. Biol. Chem. v.262 Massey, D.M.;Fahrney, D.
  12. Biochemistry v.9 Melchior, W.B.;Fahrney, D. https://doi.org/10.1021/bi00804a010
  13. Methods Enzymol. v.47 Miles, E.W.
  14. Biochim. Biophys. Acta v.996 Nakanishi, Y.;Isobashi, F.;Ebisuno, S.;Sakamoto, Y. https://doi.org/10.1016/0167-4838(89)90249-5
  15. Biochemistry v.23 Nuiry, I,I.;Hermes, J.D.;Weiss, P.M..;Chen, C.Y.;Cook, P.F. https://doi.org/10.1021/bi00317a013
  16. Biochem. Biophys. Acta v.1119 Olano, J.;De Arriaga, D.;Ua, J.R.;Buspo, F.;Soler, J.
  17. Biochem. J. v.20 Quastel, J.H.;Woolf, B. https://doi.org/10.1042/bj0200545
  18. Arch. Biochem. Biophys. v.147 Rudolph, F.B.;Fromm, H.J. https://doi.org/10.1016/0003-9861(71)90313-4
  19. Biochem. Biophys. Acta. v.321 Suzuki, S.;Yamajuchi, J.;Tokushige, M.
  20. Arch. Biochem. Biophys. v.93 Wilkinson, J.S.;William, V.R. https://doi.org/10.1016/0003-9861(61)90318-6
  21. J. Biol. Chem. v.242 Williams, V.R.;Lartigue, D.J.
  22. Korean Biochem. J. (presently J. Biochem. Mol. Biol.) v.27 Yoon, M.Y.;Cook, P.F.
  23. Arch. Biochem. and Biophy. v.320 Yoon, M.Y.;Kim, A.;Cook, T.;Berdis, A.J.;Karsten, W.E.;Schnackerz, K.D.;Cook, P.F. https://doi.org/10.1006/abbi.1995.1348