• Title/Summary/Keyword: Sulfenic acid

Search Result 8, Processing Time 0.023 seconds

Base-Catalyzed Rearrangement of Some 1,3-Oxathiolane Sulfoxides: Mechanistic Viewpoint of the Sigmatropic and Elimination Reactions

  • Hahn, Hoh-Gyu;Nam, Kee-Dal;Cheon, Seung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1379-1384
    • /
    • 2004
  • Rearrangements of 1,3-oxathiolane sulfoxides 8 and 9 in the presence of base are described from a mechanistic viewpoint of sigmatropic and elimination reactions. In the presence of triethylamine the (Z)-sulfoxide 8 gave the corresponding thiolsulfinate 10 by way of dimerization of the sulfenic acid intermediate 2 at room temperature while the (E)-sulfoxide 9 was recovered even after refluxing in ethyl acetate by the reversal of the [2,3]-sigmatropic rearrangement of the sulfenic acid 4. Triethylamine promoted the developing charge separation in the transition state of the sigmatropic rearrangement of the (Z)-sulfoxide 8 to facilitate the ring opening to the sulfenic acid 2. The reason for more facile ring opening of the (Z)-sulfoxide 8 in comparison with the corresponding (E)-sulfoxide 9 is attributable to the differences in the reactivity of the hydrogen adjacent to the carbonyl group. Triethylamine was not strong base to deprotonate the carbonyl-activated methylene hydrogen of the (E)-sulfoxide 9 but enough to catalyze the sigmatropic process of the sulfoxides. The sulfenic acid 2 dimerized to the thiolsulfinate 10 while the sulfenic acid 4 proceeded the sigmatropic ring closure. In the presence of strong base such as potassium hydroxide, the elimination reaction was predominant over the sigmatropic rearrangement. In this reaction condition, both sulfoxides 8a and 9a gave a mixture of the disulfide 12, the isomeric disulfide 14, and the sulfinic acid 13. Under the strong alkaline condition an elimination of activated hydrogen from the carbon adjacent to the carbonyl group to furnish the sulfenic acid 2a and the isomeric sulfenic acid 18. The formation of the transient intermediate in the reaction was proven by isolation of the isomeric disulfide 14. The reactive entity was regarded as the sulfenic acid rather than sulfenate anion under these reaction conditions.

Sulfenic Acid Derived from 1,3-Oxathiolane-3-oxide (1,3-Oxathiolane-3-oxide로 부터 유도되는 술펜산)

  • Wha Suk Lee;Oee Sook Park
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.197-202
    • /
    • 1987
  • Sigmatropic rearrangement of cis and trans-2-methyl-N-phenyl-1,3-oxathiolane-2-acetamide (b) and (c) gave unisolable sulfenic acids (d) and (f), respectively. These sulfenic acids were confirmed by deuterium exchange reactions involving 2-methylene and 2-methyl groups. The reactions also showed that no isomerization between the cis and trans sulfoxides (b) and (c) occurred under neutral conditions. However, the isomerization took place in the presence of acid catalyst. Stereospecific recyclization of sulfenic acids to the sulfoxides is attributable to possible hydrogen bonding between sulfenyl oxygen and NH proton or it arises from the geometrical requirements of the reacting bond and atoms in the reverse sigmatropic rearrangement. In the oxidation of 1, 3-oxathiolane, cis sulfoxide (b) could be obtained selectively in high yield by using $H_2O_2$-benzene seleninic acid.

  • PDF

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

A Study on the Rearrangement of 1,3-Thiazolidine Sulfoxides to Dihydro-1,4-thiazines (1,3-티아졸리딘술폭시드의 디히드로-1,4-티아진 유도체로의 전위에 관한 연구)

  • Wha Suk Lee;Hoh Gyu Hahn;He-Duck Mah
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.247-256
    • /
    • 1989
  • 4-Acetyl-5,6-dihydro-2-methyl-1,4-thiazine carboxylic acid derivatives 24 were prepared by ring expansion of corresponding thiazolidine sulfoxides. Oxidation of 2-methyl-1,3-thiazolidine-2-acetic acid derivatives 12 gave a mixture of cis and trans sulfoxides, 14 and 15. Assignments of the cis and trans sulfoxides were based on the $^1HNMR$ and IR spectroscopy and regioselectivity of deuterium exchange reaction. With PTSA as acid catalyst both the cis and trans sulfoxide, 14 and 15 were transformed via sulfenic acid 18 to dihydro-1,4-thiazine 24. However, under the neutral conditions (in DMF at $100^{\circ}C$) the trans sulfoxides 15 rearranged via sulfenic acid 21 to isomeric dihydrothiazines 27. The mechanism of formations of 24 and 27 is also discussed.

  • PDF

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Effect of Exposing Eggs of Uzi Fly, Exorista bombycis (Louis) (Diptera : Tachinidae) to Volatiles of Allium sativum L. (Liliaceae)

  • Narayanaswamy, K.C.;Dandin, S.B.
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.23-26
    • /
    • 1998
  • Exposure of freshly laid eggs of Exorista bombycis (Louis) to volatiles emanating from bulbs of Allium sativum L. for different durations resulted in signigicant reduction in their hatchability. Maggots hatched from the eggs exposured for 64 h and 72 h were failed to emerge from host larvae. The duration of development stages of E. bombycis was prolonged besides reduction in rate of pupation and adult emergence as the egg exposure period increased. The findings are interpreted as the chronic effects of volatiles of garlic affecting maggots following developmental defects sustainable during embryonic development. The known major chemical components of A. sativum such as allicin, thioacrolein, ajoune, 2-propene sulfenic acid, 2-propene thiol and propylene were presumed to be responsible for the adverse consequences reported in this paper.

  • PDF

Overview on Peroxiredoxin

  • Rhee, Sue Goo
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys ($C_P$) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the $C_P$-SH to cysteine sulfenic acid ($C_P$-SOH), which then reacts with another cysteine residue, named the "resolving" Cys ($C_R$) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.

A Study on the Stereochemistry of 1,3-Thiazolidine (1,3-티아졸리딘 술폭시드의 입체구조에 관한 연구)

  • Ma He-Duck;Park Shin-Ja;Han Hoh-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.119-130
    • /
    • 1993
  • The stereochemistry of 1,3-thiazolidine sulfoxides 1 in which 3 chiral centres are present in a molecule was elucidated by deuterium exchange and trapping reactions. 3-Acetoxy-1,3-thiazolidines 5 was oxidized to 6 and 8, corresponding $\alpha$-cis 10, $\alpha$-trans 11, $\beta$ -cis 12, and $\beta$ -trans 13 isomers were separated from their diasteromeric mixtures. Sulfoxide 10 was isomerized to more thermodynamically stable isomer 13 under neutral conditions in refluxing benzene or toluene. The methyl hydrogens of 2-methyl group in the sulfoxide 13 and those of the sulfoxide 11 were deuterated by the deuterium incorporation reactions. The intermediate sulfenic acids 25 and 26 derived from the sulfoxides 10 and 12 via sigmatropic rearrangement were trapped by 2-mercaptobenzothiazole (2-MBT) to give disufides 27 and 28 respectively. However, the sulfoxides 11 and 13 were transformed to ring expansion product dihydro-1,4-thiazine 29 under the same reaction conditions. In the presence of acid catalyst, the sulfoxides 10, 11, and 12 were converted to dihydro-1,4-thiazine 29 through the sulfoxide 13 quantitatively. The mechanisms of isomerization of sulfoxides and the formation of 29 were also discussed.

  • PDF