Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2368

Overview on Peroxiredoxin  

Rhee, Sue Goo (Yonsei Biomedical Research Institute, Yonsei University College of Medicine)
Abstract
Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys ($C_P$) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the $C_P$-SH to cysteine sulfenic acid ($C_P$-SOH), which then reacts with another cysteine residue, named the "resolving" Cys ($C_R$) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.
Keywords
circadian rhythm; hydrogen peroxide; peroxiredoxin; redox regulation; thiol-specific peroxidasee;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984.   DOI
2 Causton, H.C., Feeney, K.A., Ziegler, C.A., and O'Neill, J.S. (2015). Metabolic cycles in yeast share features conserved among circadian rhythms. Curr. Biol. 25, 1056-1062.   DOI
3 Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994a). Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
4 Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021.   DOI
5 Cox, A.G., Pullar, J.M., Hughes, G., Ledgerwood, E.C., and Hampton, M.B. (2008). Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Rad. Biol. Med. 44, 1001-1009.   DOI
6 Diet, A., Abbas, K., Bouton, C., Guillon, B., Tomasello, F., Fourquet, S., Toledano, M.B., and Drapier, J.C. (2007). Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J. Biol. Chem. 282, 36199-36205.   DOI
7 Dietz, K.J. (2016). Thiol-based peroxidases and ascorbate peroxidases:why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells 39, 20-25.   DOI
8 Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464.   DOI
9 Fisher, A.B. (2011). Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15, 831-844.   DOI
10 Furuta, T., Imajo-Ohmi, S., Fukuda, H., Kano, S., Miyake, K., and Watanabe, N. (2008). Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur. J. Immunol. 38, 1341-1350.   DOI
11 Gretes, M.C., Poole, L.B., and Karplus, P.A. (2012). Peroxiredoxins in parasites. Antioxid. Redox Signal. 17, 608-633.   DOI
12 Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815.   DOI
13 Hampton, M.B., and O'Connor, K.M. (2016). Peroxiredoxins and the regulation of cell death. Mol. Cells 39, 72-76.   DOI
14 Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.
15 Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635.   DOI
16 Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., and Rhee, S.G. (2012). Feedback control of adrenal steroidogenesis via $H_2O_2$-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584-594.   DOI
17 Kil, I.S., Ryu, K. W., Lee, S.Y., Kim, Y. Y., Chu, S. Y., Kim, J. H., Park, S., Rhee, S. G. (2015). Circadian Oscillation of Sulfiredoxin in the Mitochondria. Mol. Cell 59, 1-13.   DOI
18 Kim, I.H., Kim, K., and Rhee, S.G. (1989). Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc. Natl. Acad. Sci. USA 86, 6018-6022.   DOI
19 Knoops, B., Goemaere, J., Van der Eecken, V., and Declercq, J.P. (2011). Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15, 817-829.   DOI
20 Knoops, B., Argyropoulou, V., Becker, S., and Ferte, L., Kuznetsova, O. (2016). Multiple roles of peroxiredoxins in inflammation. Mol. Cells 39, 60-64   DOI
21 Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424.   DOI
22 Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484, 146-154.   DOI
23 Latimer, H.R., and Veal, E.A. (2016). Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol. Cells 39, 40-45.   DOI
24 Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372.   DOI
25 Lim, J.M., Lee, K.S., Woo, H.A., Kang, D., and Rhee, S.G. (2015). Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J. Cell Biol. 210, 23-33.
26 Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to $H_2O_2$-induced cell death. J. Biol. Chem. 280, 28775-28784.   DOI
27 Mullen, L., Hanschmann, E.M., Lillig, C.H., Herzenberg, L.A., and Ghezzi, P. (2015). Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol. Med. 21, 98-108.   DOI
28 Nadeau, P.J., Charette, S.J., Toledano, M.B., and Landry, J. (2007). Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913.   DOI
29 Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964.   DOI
30 Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., and Inoue, T. (2010). Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147, 109-115.   DOI
31 Netto, L.E.S., and Antunes, F. (2016). The roles of peroxiredoxin and thioredoxin in hydrogen reroxide sensing and in signal transduction. Mol. Cells 39, 65-71.   DOI
32 O'Neill, J.S., and Reddy, A.B. (2011). Circadian clocks in human red blood cells. Nature 469, 498-503.   DOI
33 O'Neill, J.S., van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.Y., Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554-558.   DOI
34 Olmedo, M., O'Neill, J.S., Edgar, R.S., Valekunja, U.K., Reddy, A.B., and Merrow, M. (2012). Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109, 20479-20484.   DOI
35 Parsonage, D., Nelson, K.J., Ferrer-Sueta, G., Alley, S., Karplus, P.A., Furdui, C.M., and Poole, L.B. (2015). Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 54, 1567-1575.   DOI
36 Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., and Karplus, P.A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40, 435-445.   DOI
37 Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-41.   DOI
38 Poole, L.B., and Nelson, K.J. (2016). Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39, 53-59.   DOI
39 Putker, M., and O'Nell, J.H. (2016). Reciprocal control of the circadian clock and cellular redox state - a critical appraisal. Mol. Cells 39, 6-19.   DOI
40 Rhee, S.G. (2006). Cell signaling. $H_2O_2$, a necessary evil for cell signaling. Science 312, 1882-1883.   DOI
41 Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Rad. Biol. Med. 38, 1543-1552.   DOI
42 Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410.   DOI
43 Riddell, J.R., Wang, X.Y., Minderman, H., and Gollnick, S.O. (2010). Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J. Immunol. 184, 1022-1030.   DOI
44 Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606.   DOI
45 Salzano, S., Checconi, P., Hanschmann, E.M., Lillig, C.H., Bowler, L.D., Chan, P., Vaudry, D., Mengozzi, M., Coppo, L., Sacre, S., et al. (2014). Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA 111, 12157-12162.   DOI
46 Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A., and Ames, B.N. (1990). Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265, 10535-10540.
47 Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., Sekiya, T., Ooboshi, H., Kitazono, T., Yanagawa, T., et al. (2012). Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911-917.   DOI
48 Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for $H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70.   DOI
49 Sun, H.N., Kim, S.U., Huang, S.M., Kim, J.M., Park, Y.H., Kim, S.H., Yang, H.Y., Chung, K.J., Lee, T.H., Choi, H.S., et al. (2010). Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J. Neurochem. 114, 39-50.
50 Toledano, M.B., and Huang, B. (2016). Microbial 2-Cys Prxs: insights into their complex physiological roles. Mol. Cells 39, 31-39.   DOI
51 Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem Biophys. 467, 95-106.   DOI
52 Van Laer, K., and Dick, T.P. (2016). Utilizing natural and engineered peroxiredoxins as intracellular peroxide reporters. Mol. Cells 39, 46-52.   DOI
53 Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteinecontaining sequence. J. Biol. Chem. 278, 47361-47364.   DOI
54 Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., and Hidalgo, E. (2005). A cysteine-sulfinic acid in peroxiredoxin regulates $H_2O_2$-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875-8880.   DOI
55 Winterbourn, C.C. (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol. 528, 3-25.   DOI
56 Winterbourn, C.C., Peskin, A.V. (2016). Kinetic approaches to measuring peroxiredoxin reactivity. Mol. Cells 39, 26-30.   DOI
57 Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140, 517-528.   DOI
58 Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003a). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653.   DOI
59 Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003b). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40.   DOI
60 Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem 277, 38029-38036.   DOI