• Title/Summary/Keyword: Suction system

Search Result 426, Processing Time 0.022 seconds

Effects of a Closed Endotracheal Suction System on Oxygen Saturation, Ventilator-Associated Pneumonia, and Nursing Efficacy (폐쇄형 흡인술이 인공호흡기 환자의 산소포화도, 인공호흡기 관련 폐렴 및 흡인간호 효율성에 미치는 영향)

  • Lee Eun-Sook;Kim Sung-Hyo;Kim Jung-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.7
    • /
    • pp.1315-1325
    • /
    • 2004
  • Purpose: The purpose of this study was to examine the effects of a closed endotracheal suction system(CES) on oxygen saturation, ventilator associated pneumonia(VAP), and nursing efficacy in mechanically ventilated patients. Method: This study was conducted in the intensive care unit of a University Hospital in Gwangju City. Data was collected from July to October, 2003. Seventy mechanically ventilated patients were randomly divided into two groups; 32 for CES and 38 for open endotracheal suction system(OES) protocol. Twenty one nurses were also involved to examine the nurses' attitude of usefulness about CES. Result: $SaO_2$ was significantly different between CES and OES. The incidence of VAP in CES was lower than that of OES. Nursing efficacy was related to time, cost, and usefulness of the suction system. Time of suctioning in CES was shorter than that of OES. CES also contributed significantly to lower the cost of treatment than OES. The usefulness score of CES increased after 6 months of use. Conclusion: CES prevented VAP, was cost effective, and a safe suctioning system. CES can be used with patients with sensitivity to hypoxygenation and with a high risk of VAP.

Airflow Characteristics of Natural Air Drying for Rough Rice (벼 상온통풍건조시설의 송풍특성)

  • Lee, Hyo-Jai;Kim, Hoon;Han, Jae-Woong
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.3
    • /
    • pp.391-397
    • /
    • 2013
  • This study was conducted to define the characteristics of the fan according to the bed depth of rough rice for the silo used in South Korea. In this study, the characteristics like air flow resistance and air flow rate of the fan were investigated for an independent blowing system with 1 fan and the serial blowing system with 2 fans. In the experiment, the depth of rough rice was determined by 0, 1, 2, 3.2 and 4.5 m for an independent blowing system and the depth of rough rice was 4.5 m for the serial blowing system. The air flow resistances of the blowing fan and the suction fan in an independent blowing system were 55 mmAq and 88 mmAq respectively. In addition, the air flow resistance of the serial blowing system was 61% lower than the blowing fan and 28% lower than the suction fan of the independent blowing system. The air flow rates of the blowing fan and the suction fan in the serial blowing system were 516 $m^3/min$, 570 $m^3/min$, respectively. The former was 22% higher than the blowing fan while the latter was 29% higher than the suction fan in the independence blowing system. In other words, the serial blowing system was superior to the independent blowing system in blowing characteristics because the air flow rate was lower and air flow resistance was higher than the independent blowing system. However, the fan power consumption of the serial blowing system was more than 100% comparing with the independent blowing system.

Soil water retention and hysteresis behaviors of different clayey soils at high suctions

  • Li, Ze;Gao, You;Yu, Haihao;Chen, Bo;Wang, Long
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.373-382
    • /
    • 2022
  • Unsaturated soil at high suctions is widespread. Many civil engineering projects are related to the hydro-mechanical behavior of unsaturated soils at high suctions, particularly in arid and semiarid areas. To investigate water retention behaviors of nine clayey soils (one is classified as fat clay and the others are classified as lean clay according to the unified soil classification system), the high suction (3.29-286.7 MPa) was imposed on the specimens at zero net stress by the vapor equilibrium technique. In this paper, the effect of void ratio on the water retention behavior at high suction was discussed in detail. Validation data showed that soil types, i.e., different mineralogical compositions, are critical in the soil water retention behavior at a high suction range. Second, the hysteresis behavior at a high suction range is mainly related to the clay content and the specific surface area. And the mechanism of water retention and hysteresis behavior at high suctions was discussed. Moreover, the maximum suction is not a unique value, and it is crucial to determine the maximum suction value accurately, especially for the shear strength prediction at high suctions. If the soil consists of hydrophilic minerals such as montmorillonite and illite, the maximum suction will be lower than 106 kPa. Finally, using the area of hysteresis to quantify the degree of hysteresis at a high suction range is proposed. There was a good correlation between the area of hydraulic hysteresis and the specific surface area.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • Kim, H.D.;Lee, J.H.;Woo, S.H.;Choi, B.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.329-334
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Navier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy. A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are known, we can predict the critical mass flow with good accuracy.

  • PDF

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • 김희동;이준희;우선훈;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Wavier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are blown, we can predict the critical mass flow with good accuracy.

  • PDF

Basic Design of Subsea Manifold Suction Bucket (심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계)

  • Woor, Sun-Hong;Lee, Kangsu;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.

Real-time unsaturated slope reliability assessment considering variations in monitored matric suction

  • Choi, Jung Chan;Lee, Seung Rae;Kim, Yunki;Song, Young Hoon
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.263-274
    • /
    • 2011
  • A reliability-based slope stability assessment method considering fluctuations in the monitored matric suction was proposed for real-time identification of slope risk. The assessment model was based on the limit equilibrium model for infinite slope failure. The first-order reliability method (FORM) was adopted to calculate the probability of slope failure, and results of the model were compared with Monte-Carlo Simulation (MCS) results to validate the accuracy and efficiency of the model. The analysis shows that a model based on Advanced First-Order Reliability Method (AFORM) generates results that are in relatively good agreement with those of the MCS, using a relatively small number of function calls. The contribution of random variables to the slope reliability index was also examined using sensitivity analysis. The results of sensitivity analysis indicate that the effective cohesion c' is a significant variable at low values of mean matric suction, whereas matric suction ($u_a-u_w$) is the most influential factor at high mean suction values. Finally, the reliability indices of an unsaturated model soil slope, which was monitored by a wireless matric suction measurement system, were illustrated as 2D images using the suggested probabilistic model.

A Study on Measuring Soil-Water Characteristic Curve Using a Suction Control Technique (흡입력 조절 기법을 이용한 함수특성곡선 측정에 관한 연구)

  • Lee, Joonyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5587-5594
    • /
    • 2012
  • Determination of the soil-water characteristic curve is one of the most important things to solve geotechnical engineering problems. Expecially, convenient and reliable method to measure the soil-water characteristic curve during drying and wetting cycles is required with lower labor input, more independence from operator experience, and shorter testing time than other available methods. Many measurement methods including the flow pump system have been developed to characterize the soil-water characteristic curve for the several decades. This study measured the soil-water characteristic curve during drying and wetting cycles using a suction control technique with the flow pump system. Two test materials were used for determination of the soil-water characteristic curve, and it is concluded that suction control technique is suitable for determination of the soil-water characteristic curve and characterization of the hydraulic hysteresis with varying test conditions. Especially, the suction control technique can reduce error of measurement and save time in measuring the soil-water characteristic curve due to automated system and high degree of precision.

Numerical Analysis on Hood Shape Improvement of Local Ventilation System (국소환기시스템의 후드형상 개선에 따른 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Choi, Joo-Hong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2009
  • The aim of this study is to remove crack on a ventilation device at the suction part of zinc plating factory, and the main point is making optimum configuration by improving an existing hood system. The result shows that existing hood system has problem with duct configuration, angle and reducer. Model-5 shows lowest pressure difference as meaning of suction capability. The hood inlet surface has most uniform suction capability.

Three-dimensional numerical analysis of nonlinear phenomena of the tensile resistance of suction caissons

  • Azam, Arefi;Pooria, Ahad;Mehdi, Bayat;Mohammad, Silani
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.255-270
    • /
    • 2023
  • One of the main parameters that affect the design of suction caisson-supported offshore structures is uplift behavior. Pull-out of suction caissons is profoundly utilized as the offshore wind turbine foundations accompany by a tensile resistance that is a function of a complex interaction between the caisson dimensions, geometry, wall roughness, soil type, load history, pull-out rate, and many other parameters. In this paper, a parametric study using a 3-D finite element model (FEM) of a single offshore suction caisson (SOSC) surrounded by saturated soil is performed to examine the effect of some key factors on the tensile resistance of the suction bucket foundation. Among the aforementioned parameters, caisson geometry and uplift loading as well as the difference between the tensile resistance and suction pressure on the behavior of the soil-foundation system including tensile capacity are investigated. For this purpose, a full model including 3-D suction caisson, soil, and soil-structure interaction (SSI) is developed in Abaqus based on the u-p formulation accounting for soil displacement (u) and pore pressure, P.The dynamic responses of foundations are compared and validated with the known results from the literature. The paper has focused on the effect of geometry change of 3-D SOSC to present the soil-structure interaction and the tensile capacity. Different 3-D caisson models such as triangular, pentagonal, hexagonal, and octagonal are employed. It is observed that regardless of the caisson geometry, by increasing the uplift loading rate, the tensile resistance increases. More specifically, it is found that the resistance to pull-out of the cylinder is higher than the other geometries and this geometry is the optimum one for designing caissons.