• Title/Summary/Keyword: Suction system

Search Result 427, Processing Time 0.025 seconds

Study of Compressor-Performance Improvement in Automotive Air-Conditioning System (자동차용 에어컨 압축기의 성능 향상에 대한 연구)

  • Kim, Young Shin;Yoo, Seong Yeon;Na, Seung Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.713-718
    • /
    • 2015
  • The purpose of this study is to realize compressor-performance improvements in the fuel economy of an automotive air-conditioning system. We conduct cooling performance tests in a compressor calorimeter test stand. To improve the cooling performance, we investigate the increase in the suction flow rate and the decrease in the discharge dead volume. Based on the results of the test, we found that the cooling capacity and the coefficient of performance (COP) of the compressors were improved as follows. The cooling performance improved greater at high speeds than low speeds in the case of an increase in the suction flow rate increase, and it improved more at low speeds than at high speed when there was a decrease in the discharge dead volume. When both of the above factors were included, we observed that the improvement effects were generally balanced for both high- and low-speed modes, and there was a significant improvement in the discharge temperature. The improvement was found to be about 3.2% at low speed, 8.3% at high speed during in cooling performance improvement, about 5.8% at low speed and about 6.2% at high speed in COP improvement, and there was a decrease of about $3^{\circ}C$ at low speed and a $5^{\circ}C$ decrease at high speed in discharge temperature.

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.

Evaluation of Soil-Water Characteristic Curve for Domestic Bentonite Buffer (국내 벤토나이트 완충재의 함수특성곡선 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Lee, Changsoo;Cho, Won-Jin;Lee, Seung-Rae;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • High-level radioactive waste (HLW) such as spent fuel is inevitably produced when nuclear power plants are operated. A geological repository has been considered as one of the most adequate options for the disposal of HLW, and it will be constructed in host rock at a depth of 500~1,000 meters below ground level with the concept of an engineered barrier system (EBS) and a natural barrier system. The compacted bentonite buffer is one of the most important components of the EBS. As the compacted bentonite buffer is located between disposal canisters with spent fuel and the host rock, it can restrain the release of radionuclides and protect canisters from the inflow of groundwater. Because of inflow of groundwater into the compacted bentonite buffer, it is essential to investigate soil-water characteristic curves (SWCC) of the compacted bentonite buffer in order to evaluate the entire safety performance of the EBS. Therefore, this paper conducted laboratory experiments to analyze the SWCC for a Korean Ca-type compacted bentonite buffer considering dry density, confined or unconfined condition, and drying or wetting path. There was no significant difference of SWCC considering dry density under unconfined condition. Furthermore, it was found that there was higher water suction in unconfined condition that in confined condition, and higher water suction during drying path than during wetting path.

In vivo visualization of liquid-feeding phenomena of a butterfly (나비 펌프의 구조와 동적 거동의 in vivo 가시화)

  • Lee, Seung-Chul;Kim, Bo-Heum;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.69-73
    • /
    • 2011
  • Butterflies have been known to suck viscous liquids through a long, cylindrical proboscis using the large pressure difference formulated by the cyclic expansion and contraction of a muscular pump located inside their head. However, there are few studies on the liquid-feeding phenomena in a live butterfly, because it is hard to observe the internal morphological structures under in vivo condition. In this study, the dynamic motion of the pump system in a butterfly was in vivo visualized using synchrotron X-ray micro-imaging technique to analyze the liquid-feeding mechanism. The period of the liquid-feeding process is about 0.3sec. The expansion stage is about two times larger than the contraction stage in one cycle. The cyclic variation of pump volume generate large negative suction pressure and the pressure difference inside the long proboscis of a butterfly is estimated to be larger than 1atm.

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

INTERNAL FLOWS IN AIR PUMP OF ROBOT CLEANER (로봇청소기용 에어 펌프 내부 유동 해석)

  • Kim, J.W.;Seok, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.227-231
    • /
    • 2009
  • Traditional vacuum cleaner adoptsa highly rotating centrifugal impeller for generating suction region at lower pressure. The rotational speed is very high at 35,000 to 40,000 rpm and accessory structure such as a circular brush at the base plate of the cleaning devices is equipped for gathering dusts. Highly rotating impeller is effective for low pressure generation but causes noise problems. Recently, the unwanted noise is removed by installation of air-pump, instead of a centrifugal impeller, and the internal flows of the modified system are estimated in numerical and experimental approach, respectively.

  • PDF

Compressor Performance with Variation of Diffuser Vane Angle (디퓨저 베인각의 변화에 따른 압축기 성능 특성)

  • Shin, Y. H.;Kim, K. H.;Bae, M. H,;Kim, J. H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.36-43
    • /
    • 2000
  • This study presents the centrifugal compressor performance for three different vane stagger angles and wall pressure distribution within vaned diffuser channels, and is also discussed about the stability with respect to the compressor components. As the vane stagger angle decreases, the flow rate for the stall onset decreases, and higher pressure can be obtained at the low flow rate region, however, the effective operation range of the compressor decreases because of the blockage effect of the diffuser vane. Low pressure pocket within the vaned diffuser channel moves from the pressure side of leading edge to the suction side as the flow rate decreases. The compressor system stability mainly depends on that of the diffuser.

  • PDF

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

Experimental Study on Stream Turbine Cascade Flow (증기터빈 익렬유동에 관한 실험적 연구)

  • 권순범;윤의수;김병지
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.