• Title/Summary/Keyword: Suction Surface

검색결과 303건 처리시간 0.023초

불포화 풍화토 사면의 모관흡수력 분포에 대한 지반조건과 강우강도의 영향 (Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope)

  • 김용민;이광우;김정환
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1017-1025
    • /
    • 2013
  • 본 연구에서는 강우 침투에 의한 사면의 모관흡수력 분포특성을 분석하기 위하여 수리학적-역학적 특성을 고려한 동시연계해석을 수행하였다. 이를 위해, 국내 3가지 지역에서 채취한 풍화토를 대상으로 함수특성곡선(SWCC)을 산정하였으며, 이를 토대로 지반조건, 강우특성, 사면경사에 따른 모관흡수력의 변화를 관측하였다. 그 결과, 강우강도가 증가함에 따라 사면내의 모관흡수력은 급격히 감소하는 경향이 나타났으며, 사면 경사에는 큰 영향을 받지 않는 것으로 나타났다. 또한 강우강도보다 포화투수계수가 작은 지반은 표층에서 포화가 쉽게 일어나는 것을 확인하였으며, 다층으로 존재하는 경우에도 사면표층 지반의 수리학적 특성이 모관흡수력 분포에 큰 영향을 주는 것으로 나타났다.

현장타설말뚝의 전단강도 조정계수 결정법 (Determination of Shear Strength Modification Factors in Drilled Shaft)

  • Kim, Myung-Hak;Michael W. O'Neill
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 1999
  • 팽창토에 설치된 직경 305 mm 현장타설말뚝의 18개월간에 걸친 거동을 관찰하였다. 계절적 함수량 변화에 따른 말뚝주변 흙의 부피 변화가 발생시킨 말뚝의 인발력을 측정하였고, 측정한 인발력에서 말뚝 단위 표면적당의 전단 응력을 계산하였다. 본 실험 말뚝에서는 최대 전단 응력은 54 kPa이 계산되었다.

  • PDF

4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정 (Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System)

  • 권현구;이상우;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

자유수면 근처에서 직진하는 BB2 잠수함의 심도별 유체력과 중립운항에 대한 구속모형시험 연구 (A Captive Model Test on Hydrodynamic Force and Neutral Level Flight of BB2 Submarine in Straight Operation at Near Free Surface with Different Depths)

  • 권창섭;김동진;윤근항;김연규
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.288-295
    • /
    • 2022
  • In this study, the force and moment acting on a Joubert BB2 submarine model at depths near the free surface were measured through a captive model test with the scale ratio of 1/15. Based on the experiment, the pitch moment and heave force due to the "Tail suction effect", including the change in surge force with depth near the free surface, were quantitatively analyzed. The change of force and moment according to the relative position of the sail and the free surface was reviewed with the free surface waves generated for each depths. As a result, the angle of attack of the hull to counteract the pitch moment induced by the tail suction effect was derived. The effect of the hydrostatic moment component according to the angle of attack on the equilibrium of pitch moment was also taken into account. The control plane performance tests for the X-type rudder and sail plane were conducted in snorkel and surface depth conditions to figure out the control plane angles for the neutral level flight of the submarine at near free surface. The results of this study are expected to be used as a reference data for the neutral level flight of the submarine at near free surface operation in the free running model test as well as numerical studies.

흡입응력을 고려한 불포화 사면의 안정해석법 (Stability analysis of an unsaturated slope considering the suction stress)

  • 송영석;이남우;황웅기;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성 (Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor)

  • 신유환;;김광호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

입구경계층 두께와 경계층 펜스가 터빈 캐스케이드내 열전달 특서에 미치는 영향 (Effects of the Inlet Boundary Layer Thickness and the Boundary Layer Fence on the Heat Transfer Chracteristics in a Turbine Cascade)

  • 정지선;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.765-770
    • /
    • 2001
  • The objective of the present study is to investigate the effects of the various inlet boundary layer thickness on convective heat transfer distribution in a turbine cascade endwall and blade suction surface. In addition, the proper height of the boundary layer fences for various inlet boundary layer thickness were applied to turbine cascade endwall in order to reduce the secondary flow, and to verify its influence on the heat transfer process within the turbine cascade. Convective heat transfer distributions on the experimental regions were measured by the image processing system. The results show that heat transfer coefficients on the blade suction surface were increased with an augmentation of inlet boundary layer thickness. However, in a turbine cascade endwall, magnitude of heat transfer coefficients did not change with variation of inlet boundary layer thickness. The results also present that the boundary layer fence is effective in reducing heat transfer on the suction surface. On the other hand, in the endwall region, boundary layer fence brought about the subsidiary heat transfer increment.

  • PDF

상류 후류의 익렬 유동에 미치는 영향에 대한 실험적 연구 (Experimental Study on the Effects of Upstream Wakes on Cascade Flow)

  • 김형주;조강래;주원구
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.330-338
    • /
    • 2001
  • This paper is concerned with the effect of cylinder wakes upstream on blade characteristics of compressor cascade(NCA 65 series). At first, it is found that the velocity defect ratio of cylinder wake varies according to the acceleration and deceleration in a flow field but, is conserved nearly constant at flow downstream the cascade, irrespective of the flow path in the cascade. When a cylinder wake flows along near the suction surface of the blade, or impinges on the leading edge, the turbulent velocities are supplied on or inside the outer edge of boundary layer near the leading edge of suction surface, and the transition to a transitional or turbulent boundary layers is induced, so that the laminar separation is prevented, but the profile loss increases. The transition of boundary layer to a transitional or turbulent one is strongly related with the strength of added turbulent velocities near the leading edge on the suction surface, which is influenced by the flow path of a cylinder wake.

NASA Rotor 37 익형의 스윕각 최적화 (Optimization of Blade Sweep of NASA Rotor 37)

  • 장춘만;리핑;김광용
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.622-629
    • /
    • 2006
  • The shape optimization of blade sweep in a transonic axial compressor rotor of NASA Rotor 37 has been performed using response surface method and the three-dimensional Wavier-Stokes analysis. Two shape variables of the rotor blade, which are used to define the rotor sweep, are introduced to increase the adiabatic efficiency of the compressor. Throughout the optimization, optimal shape having a backward sweep is obtained. Adiabatic efficiency, which is the objective function of the present optimization, is successfully increased. Separation line due to the interference between a shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. The increase in adiabatic efficiency for the optimized blade is caused by suppression of the separation due to a shock on the blade suction surface.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.