• Title/Summary/Keyword: Suction Pressure

Search Result 689, Processing Time 0.023 seconds

Effect of Suction Pressures with Respect to the Operational Modes Using the Quorum Quenching in the Membrane Bioreactor (생물막 반응기내 quorum quenching을 이용한 운전방식에 따른 흡입 압력의 영향)

  • Min Hyeong, Kim;Eeung Mo, Koo;Hyeok, Kim;Hyun-Suk, Oh;Kun Yong, Chung
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.465-474
    • /
    • 2022
  • The suction pressure was measured with respect to operational time by the backwashable flat sheet membrane module in membrane bioreactor (MBR). The membrane module having the nominal pore size of 0.2 ㎛ and the effective membrane area of 128cm2 was submerged in MLSS 8,000 mg/L active sludge aqueous solution. The suction pressure was observed with respect to permeation flux and the quorum quenching (QQ) treatment. The effects of FR and SFCO operation methods were compared and analyzed in the experimental groups: vacant bead (VB), BH4 and DKY-1 beads. The suction pressure reduction was the most effective for the permeation flux 40 L/m2 ⋅h with the injection of DKY-1 QQ beads. Also, the suction pressure reduction by the backwashing method was more than twice for using DKY-1 QQ beads.

Diagnostics of nuclear reactor coolant pump in transition process on performance and vortex dynamics under station blackout accident

  • Ye, Daoxing;Lai, Xide;Luo, Yimin;Liu, Anlin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2183-2195
    • /
    • 2020
  • A mathematical model for the flowrate and rotation speed of RCP during idling was established. The numerical calculation method and dimensionless method were used to analyze the flow, head, torque and pressure and speed changes under idle conditions. Regularity, using the Q criterion vortex identification judgment method combined with surface flow spectrum morphology analysis to diagnose the vortex dynamic characteristics on RCP blade. On impeller blade, there is two oscillations in the pressure ratio on pressure surface in blade outlet region. The velocity on the suction surface is two times more oscillating than the inlet of blade, and there is an intersection with the velocity ratio curve on pressure surface. On blade of guide vane, the pressure ratio increases along the inlet to outlet direction, and the speed ratio decreases with the increase of idle time. There is a vortex that rotates counterclockwise on the suction surface, and the streamline on the suction surface of blade is subjected to the entrainment and blocking action of the vortex creates a large reverse flow in the main flow region. There are two vortices at the outlet of guide vane suction side and the vortices are in opposite directions.

Introduction of Suction Pile Technology (Suction Pile 공법 개요 및 그 적용)

  • 조영기;방상철;박중배;곽대진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.110-121
    • /
    • 2001
  • The interest in suction piles by the oil industry was risen in the middle of 1980's. Recently, suction piles have been applied increasingly in offshore engineering due to its low cost, simplicity, efficiency, and reliability. Suction piles have normally been used as anchors of floating structures and foundations of marine structures in deep-water locations. Suction piles have several technical advantages over conventional piles and anchors; fast and easy installation at any depth of water, extremely large resistance due to its huge size, and easy retrieval by applying a positive suction pressure inside the pile, etc. Daewoo E&C Co., Ltd. has conducted a series of field suction pile installation and loading tests inside the Okpo harbor located in Geojedo and the Onsan harbor in Ulsan, Korea, during the summer of 2001, which may provide additional validation of the analytical solutions previously developed by the US Naval Facilities Engineering Service Center. This is a brief description of the general mechanisms of suction pile installation and loading capacity based on the study conducted by the US Navy and Daewoo E&C Co., Ltd.

  • PDF

Full-scale study of conical vortices and roof corner pressures

  • Wu, F.;Sarkar, P.P.;Mehta, K.C.
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.131-146
    • /
    • 2001
  • A full-scale synchronized data acquisition system was set up on the roof of the experimental building at the Texas Tech University Wind Engineering Research Field Laboratory to simultaneously collect approaching wind data, conical vortex images, and roof corner suction pressure data. One-second conditional sampling technique has been applied in the data analysis, which makes it possible to separately evaluate the influencing effects of the horizontal wind angle of attack, ${\theta}$, and the vertical wind angle of attack, ${\varphi}$. Results show a clear cause-and-effect relationship between the incident wind, conical vortices, and the induced roof-corner high-suction pressures. The horizontal wind angle of attack, ${\theta}$, is shown to be the most significant factor in influencing the overall vortex structure and the suction pressures beneath. It is further revealed that the vertical wind angle of attack, ${\varphi}$, plays a critical role in generating the instantaneous peak suction pressures near the roof corner.

In-situ Monitoring of Matric Suctions in a Weathered Granite Soil Slope (풍화화강토 사면에서 강우로 인한 모관흡수력 변화에 대한 실험 연구)

  • 이인모;조우성;김영욱;성상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.509-516
    • /
    • 2002
  • Rainfall-induced landslides in a weathered granite soil slope have mostly relative shallow slip surfaces above the groundwater table The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure(or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

  • PDF

Centrifuge Model Tests on the Pullout Capacity of Embedded Suction Anchor without Flanges in Sand layer (모래지반에 매입된 날개없는 석션앵커의 인발력에 대한 원심모형실험)

  • Kim, Kyoung-O;Kim, You-Seok;Ko, Boo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.517-520
    • /
    • 2005
  • The embedded suction anchor(ESA) is and anchor that is driven by a suction pile. The cross-sectional shape of the ESA anchor is circle. Its diameter is the same as that of the suction pile that is used to drive it into the seafloor. For the installation, the anchor is attached to the tip of the suction pile and then driven as a unit with the pile by and applied suction pressure. Once the ESA anchor reaches the desired depth, the pile is retrieved by applying a positive pressure. Finally, only the ESA anchor remains in the soil layer. This paper presents the results of centrifuge model tests to investigate ESA pullout capacity. The main parameters that have effects on the pullout capacity of ESA may include g-level, embedded depth, direction of loading, and loading point. The results of tests show that the pullout loading capacities increase as the loading point shift toward the tip of the anchors for a given loading direction. They also indicate that the loading point associated with the maximum pullout loading capacity is located at approximately 67 percent of the anchor length from the top for the horizontal load.

  • PDF

Study on Numerical Analysis for Penetration Performance Evaluation of Doughnut-Type Suction Foundation in Sand Layer (모래지반에서 도넛형 석션기초의 관입 성능 평가를 위한 수치해석 기법에 대한 연구)

  • Haeyong Park;Osoon Kwon;Insuk Han;Hyoun Kang
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • It is difficult to control differential settlement and long-term settlement on soft ground with the template used in the pre-filing method of offshore wind power. In this study, the template adopted a suction foundation with high utility on soft ground. To analyze the penetration performance of the doughnut-type suction foundation, step-by-step numerical analysis was applied by calculating the minimum suction pressure needed for ground penetration at that depth. Scale model tests were performed and compared with the numerical analysis results. The ratio of the inside diameter compared to the outside diameter is higher, and penetration by suction was more advantageous than push-in load penetration. The step-by-step numerical analysis method showed an error within 2 % compared to the model tests, so the numerical analysis method confirmed results that the penetration performance of the doughnut-type suction foundation is valid.

Pressure Changes During Layer Cupping in a Skin Model

  • Shim, Dong Wook;An, Soo Kwang;Lee, Ha Lim;Lee, Jae Yong;Lee, Byung Ryul;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • v.38 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • Background: Cupping is widely used in Korean medicine, but there is a risk of bacterial infection if the suction pump (used for inducing negative pressure) and the patients' skin are not separated. This study aimed to investigate the effect of layer cupping by comparing the pressure changes between layer cupping and conventional cupping. Methods: To evaluate pressure changes the study was designed with 3 types of conditions applied to a skin model: (1) a Dongbang cup with a manual or motor suction pump (conventional cupping); (2) layer cupping with 2 Dongbang cups; and (3) layer cupping with a cup made by 3D printing and a Dongbang cup. Results: When a manual suction pump was used (conventional cupping), the pressure did not decrease steadily, and in 1 section there was an increase in pressure. When layer cupping was used, the pressure in the lower cup (which would be directly applied to the patient's skin), decreased steadily. Conclusion: In the pressure change graph for layer cupping in this skin model, the pressure in the lower cup (which would be placed on the patient's skin) steadily decreased, and reached equilibrium. Therefore, the layer cupping model may help to reduce the risks of bacterial infection.

Computational Fluid Dynamics of Cavitating Flow in Mixed Flow Pump with Closed Type Impeller

  • Kobayashi, Katsutoshi;Chiba, Yoshimasa
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • LES(Large Eddy Simulation) with a cavitation model was performed to calculate an unsteady flow for a mixed flow pump with a closed type impeller. First, the comparison between the numerical and experimental results was done to evaluate a computational accuracy. Second, the torque acting on the blade was calculated by simulation to investigate how the cavitation caused the fluctuation of torque. The absolute pressure around the leading edge on the suction side of blade surface had positive impulsive peaks in both the numerical and experimental results. The simulation showed that those peaks were caused by the cavitaion which contracted and vanished around the leading edge. The absolute pressure was predicted by simulation with -10% error. The absolute pressure around the trailing edge on the suction side of blade surface had no impulsive peaks in both the numerical and experimental results, because the absolute pressure was 100 times higher than the saturated vapor pressure. The simulation results showed that the cavitation was generated around the throat, then contracted and finally vanished. The simulated pump had five throats and cavitation behaviors such as contraction and vanishing around five throats were different from each other. For instance, the cavitations around those five throats were not vanished at the same time. When the cavitation was contracted and finally vanished, the absolute pressure on the blade surface was increased. When the cavitation was contracted around the throat located on the pressure side of blade surface, the pressure became high on the pressure side of blade surface. It caused the 1.4 times higher impulsive peak in the torque than the averaged value. On the other hand, when the cavitation was contracted around the throat located on the suction side of blade surface, the pressure became high on the suction side of blade surface. It caused the 0.4 times lower impulsive peak in the torque than the averaged value. The cavitation around the throat caused the large fluctuation in torque acting on the blade.

Effect of the Seed Hopper Vibration on the Seeding Performance of the Vacuum Suction Nozzle Seeder (진공흡입노즐식 파종기의 종자함 진동이 파종성능에 미치는 영향)

  • Min, Y.B.;Kim, S.T.;Kwon, H.D.;Moon, S.W.;Kang, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.179-185
    • /
    • 2008
  • The seeding rates of the vacuum suction nozzle seeders are affected by the jumping height of the seeds on the vibrating seed hopper. This study was performed to investigate the optimum vibration condition of the seed hopper on the vacuum suction nozzle seeder for improving seeding performance. Experiments were carried out to determine the vibration conditions of the seed hopper by air pressure and eccentric weight, and to optimize the seed-pickup performance of each nozzle by suction pressure. As the result with the experiments, the fluctuations of the jumping height of the seeds were showed at amplitude 0.4 mm and frequency 42 Hz, and jumping heights of the seeds were increased as the air pressure increase and the eccentric weight decrease, regardless number of seeds of the hopper. The best seeding rate of the seed hopper was 98% at the 300-seed cell, when the condition of the seed hopper was the suction air pressure of 94.6 kPa-abs., amplitude and frequency of the seed hopper vibration were at 0.57 mm and 43.6 Hz, respectively. The optimum vibrating conditions of the seed hopper were decided into frequency 43.6-43.8 Hz and the amplitudes 0.61-0.62 mm.