• Title/Summary/Keyword: Suction Pile Suction말뚝

Search Result 3, Processing Time 0.018 seconds

A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands (사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF

A Study on Behavior of Pull-out Loaded Suction Pile in Sands (사질토지반에서 인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.944-955
    • /
    • 2009
  • In this thesis the model tests were performed to the pull-out characteristics of a suction pile subjected to a pull-out in sands. For this model tests, three different soil conditions ($D_r$=45, 65, 82%), three pile diameters (D=100, 150, 200mm) and three pile lengths (L=100, 150, 200mm), were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate pull-out resistances increased as the relative density of sands, pile diameter, length and the ratio of pile length to diameter increased. The ultimate pull-out resistance by Meyerhof method(1973) overestimated that by the model test, but the results using the soil-pile friction angle suggested by Aas(1966) in the Meyerhof(1973) method were in good agreement with the experimental results.

  • PDF

Compatible Anchors of Silt Protector in Shallow Sea with Mud Seafloor Material (천해역 점성토 지반에 적합한 오탁방지막 기초 앵커)

  • KWEON GI-CHUL;HONG NAM-SEEG;SONG Mu-HYO;CHOI CHANG-GYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.7-12
    • /
    • 2003
  • The Navy has tested the holding capacity of many kinds of anchors in order to propose the design chart for the holding capacity of drag-embedment anchors. The design chart is only applicable up to the cable bottom angle 60 when load is raised to the ultimate weight. However, the anchor experiences a significant uplift force when the angle is above 60 in shallow seas. In this paper, the procedure for the estimation of the holding capacity of anchors in mud is proposed. Drag-embedment anchors do not function well when there is a significant uplift component of load in soft seafloor materials, such as mud. Under these loading and seafloor conditions, gravity anchors seems to be more efficient. However, they are too heavy for their holding capacity. Therefore, suction pile (hollow concrete block) is more beneficial to the foundntion of silt protector in shallow sea with mud seafloor materials.