• 제목/요약/키워드: Suction Efficiency

검색결과 256건 처리시간 0.026초

오비터 진공펌프 성능해석 (Performance Analysis of Orbiter Vacuum Pump)

  • 김현진;심재휘
    • 한국유체기계학회 논문집
    • /
    • 제9권5호
    • /
    • pp.28-35
    • /
    • 2006
  • Orbiter mechanism has been applied to vacuum pump design for small oxygen generator where low vacuum of about 200 mmHg is required. Performance of the designed vacuum pump has been numerically investigated: calculated volumetric and adiabatic efficiencies were 69.7% and 83.9%, respectively for leakage clearance of $10{\mu}m$. Total efficiency of the orbiter vacuum pump was 77.5%. At the shaft speed of 1700 rpm suction displacement volume of 6.3cc provided discharge flow at the rate of 2.3 liter/min with power consumption of 10.1Watt. Torque variation of the orbiter pump was only about 20% of that of diaphragm pump.

Optimization of Blade Profile of a Plenum Fan

  • Wu, Lin;Dou, Hua-Shu;Wei, Yikun;Chen, Yongning;Cao, Wenbin;Ying, Cunlie
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.95-106
    • /
    • 2016
  • A method of optimization design for the blade profile of a centrifugal impeller by controlling velocity distribution is presented, and a plenum fan is successfully designed. This method is based on the inner flow calculation inside the centrifugal impeller, and is related to the distribution of relative velocity. The results show that after optimization, the boundary layer separation on the suction surface has been inhibited and the stability of plenum fan is improved. The flow at the impeller outlet is also studied, and the jet-wake pattern at the impeller outlet is improved obviously by optimization. The calculation result shows that the static pressure and static pressure efficiency can be increased by 15.4% and 21.4% respectively.

CNG와 경유의 2원 연료 디젤기관의 성능 및 배출가스 개선을 위한 실험연구 (Improving Performance and Emissions in a Diesel Engine Dual Fueled with Compressed Natural Gas)

  • 김복석;;박찬국
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.57-63
    • /
    • 2000
  • This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual fueled with natural gas. Dual fuelling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Suction air quantity and injection timing controls are very useful to improve emissions and thermal efficiency at low load.

  • PDF

서브쿨링향상을 위한 차량공조 시스템의 냉방성능에 관한 연구 (A Study on Refrigeration Performance of Vehicle HVAC System for Sub-Cooling Improvement)

  • 박만재
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2004
  • The general method which changes sub-cooling of refrigerant is to control the expansion valve in the state of mixing with liquid and gas phase. In this study, the performance of vehicle air conditioning system is to control either changing the expansion valve or adding the sub condenser. Therefore, this research finally is tested in case of the fourth test procedure, the second test was suitable for a valve opening area due to adjusting valve slope in comparison with the other test. The other test except for the second test happened to do liquid back due to the excessively liquified refrigerant into the system. In conclusion, the second test was appeared not to be influenced upon liquid back, and it is to expect positive performance by controlling an expansion valve. Therefore, it will be also useful to research for an increase of compressor efficiency Performance improvement of an air conditioner is to reinforce the suction performance of the evaporator and increase the sub-cooling, which make use of the sub-cooling system.

공기압축기 성능향상을 위한 로터 프로파일 설계기술 개발 연구 (Development of rotor profile design technology for improving the screw compressor performance)

  • 김태윤;이재영;이동균;김윤제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.585-592
    • /
    • 2009
  • The performance of screw compressor depends on lots of design parameters of rotor profile, such as length of seal line, wrap angle, blow hole, suction and discharge port size, number of rotor lobe, etc. The optimum rotor profile makes it possible to increase the compression efficiency with low energy consumption, and to minimize the loss of power. In this research, a new rotor profile design and performance analysis are done by computer simulation. It is expected that the volumetric efficiency is improved because the internal leakage is reduced due to the minimization of blow hole and clearance, and the stiffness of rotors is increased due to the reduction of length to diameter ratio. Also, the specific power consumption will be secured for use ranging from low to high operation speed.

  • PDF

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.

열전달 해석을 통한 스크롤 압축기 성능 개선 (Performance Improvement of a Scroll Compressor by Heat Transfer Analysis)

  • 홍상욱;류호선
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.22-29
    • /
    • 2000
  • Numerical analysis using three dimensional finite volume method for the discretization, adaptive grid method for the numerical accuracy, multiple rotating frame method for the rotating body and the standard $k-{\epsilon}$ model for the turbulent flow was performed to understand the heat transfer phenomena and to improve the efficiency of the scroll compressor. The temperature measurement was carried out under ARI condition. It was found that the fluid temperature in the compressor was predicted accurately while the temperature of the motor coil showed large discrepancy between the calculation and experiment due to the large anisotropy of the conductivity and non homogeneity. We found that the efficiency of the compressor depends on the inlet temperature of the compressing part and the flow pattern around the inlet region of the compressing part influences the inlet temperature due to high surface temperature of the main frame. The efficiency of the compressor using Coanda effect is higher than the previous one because the smooth suction at the inlet region of the compressing part leads to low heat transfer to the refrigerant of the compressor.

  • PDF

Numerical Predictions of Roughness Effects on the Performance Degradation of an Axial-Turbine Stage

  • Kang Young-Seok;Yoo Jae-Chun;Kang Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1077-1088
    • /
    • 2006
  • This paper describes a numerical investigation on the performance deteriorations of a low speed, single-stage axial turbine due to use of rough blades. Numerical calculations have been carried out with a commercial CFD code, CFX-Tascflow, by using a modified wall function to implement rough surfaces on the stator vane and rotor blade. To assess the stage performance variations corresponding to 5 equivalent sand-grain roughness heights from a transition ally rough regime to a fully rough regime, stage work coefficient and total to static efficiency were chosen. Numerical results showed that both work coefficient and stage efficiency reduced as roughness height increased. Higher surface roughness induced higher blade loading both on the stator and rotor which in turn resulted in higher deviation angles and corresponding work coefficient reductions. Although, deviation angle changes were small, a simple sensitivity analysis suggested that their contributions on work coefficient reductions were substantial. Higher profile loss coefficients were predicted by higher roughness heights, especially on the suction surface of the stator and rotor. Furthermore sensitivity analysis similar to the above, suggested that additional profile loss generations due to roughness were accountable for efficiency reductions.

스크류 열펌프 시스템의 운전제어 방안에 관한 연구 (A Study on the Operating Control of a Heat Pump System with Screw Compressors)

  • 박준택;이영수;김지영;채규정;양희정
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.168-172
    • /
    • 2013
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump system, which will be used for district heating and cooling. In this study, two issues of the system operating control were investigated. The first issue is the mode switching control from 1-stage to 2-stage. A stable 2-stage heating operation is guaranteed, only if the load-side water inlet temperature is over a certain value, where the 1-stage heating operation should be done first from a cold start. The second issue is oil level control. An oil shortage problem in the low stage compressor, which depends on the degree of suction superheat, was solved by a proper oil level control scheme.

Performance Comparison of Various Types of $CO_2$ Compressors for Heat Pump Water Heater Application

  • Kim, Hyun-Jin;Kim, Woo-Young;Ahn, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical simulations for scroll, two-stage twin rotary, and two-cylinder reciprocating compressors have been carried out to understand the effectiveness of each type compressor for heat pump water heater application using $CO_2$ as refrigerant. For suction pressure of 3.5 MPa and discharge pressure of 9 MPa, clearance volume ratio of the reciprocating compressor needs to be about 5% or less to have the volumetric efficiency comparable to that of the scroll compressor with tip clearance of $5\;{\mu}m$. Volumetric efficiency of the scroll compressor is quite sensitive to tip clearance. Adiabatic efficiency of the twin rotary compressor was calculated to be the lowest among the three types, and the most severe drawback of the $CO_2$ scroll compressor was a significant increase in the mechanical loss at the thrust surface supporting the orbiting scroll member. While the scroll compressor showed very smooth torque load variation, peak-to-peak torque variations of the twin rotary and two-cylinder reciprocating compressors were about 50% and 250%, respectively.