최근 유비쿼터스를 비롯한 정보기술의 급격한 발전에 따라 GIS를 통하여 누구나 일상 속에서 직접 지리정보를 활용할 수 있게 되면서 공공분야 및 연관 산업분야에 큰 파급효과를 가져오고 있다. 특히, 지리정보의 유통 방식이 기존의 공급자가 제공하는 지리정보에 대해 조회 위주에서 벗어나 현장에서 실시간으로 지리정보를 가공하고 직접 갱신할 수 있는 양방향 서비스로 진화하면서, GIS는 u-City 구현에 필수적인 위치기반 공공서비스 인프라 구현을 통해 민간의 내비게이션, 텔레매틱스 등 관련분야 시장규모가 해마다 급속히 성장하고 있다. 하지만 이러한 상승세에도 불구하고 여전히 기관마다 서로 유사한 서비스를 제공하는 경우가 빈번하고, 민간의 대다수 유관업체들 역시 아직 지속적인 수익모델을 찾지 못해 단말기 제조 등 특정 분야에만 머무르고 있는 실정이다. 따라서 업종특성에 맞는 보다 구체적이고 유망한 신규 사업모델의 개발이 시급하다. 본 연구는 GIS 특성에 근거하여 사업모델 개발에 필요한 성공요인을 도출하고 그 타당성을 분석함으로서, 이를 통해 다양한 성공적인 지리정보 활용 비즈니스 모델의 구현과 평가에 기여하고자 한다.
Purpose The purpose of this paper is to conduct exploratory comparative research on the determinants of successful crowdfunding projects, focusing on multiple crowdfunding platforms in Korea, U.S., and Japan. Design/methodology/approach This study collected data from three representative crowdfunding platforms: Wadiz (Korea), Kickstarter (U.S.), and Readyfor (Japan). Based on 1,906 crowdfunding projects from Wadiz, 3,864 projects from Kickstarter, and 3,060 projects from Readyfor, multiple regression models were applied. Findings Focusing on the crowdfunding projects which have overly achieved goal amount, the analysis results show that the number of comments, the number of Facebook likes and the number of backers have an positive impact on the performance of crowdfunding projects, while target amount has a negative impact. Comparatively, word counts of project description have an impact on funding performance in U.S. and Japan, while the number of images in project description affects funding performance in Korea and U.S. Meanwhile, video clips in project description has little impact on crowdfunding performance in all of the three funding platforms.
This paper deals with the consideration of mathematical models with regards to growth of cluster and firms by reviewing the Metcalf and Breuner's articles. prior studies have been argued the phenomenon of local industrial clusters and districts. Several concepts have been adopted to support the success of and changes to these clusters and firm growth. Through the review of two papers, evolution of both cluster and firm growth may be achieved in terms of utilizations of the different local aspects and mechanisms. This paper supports the theoretical back bone with regards to the regional cluster policy implementing in Korea for the purpose of regional developments. In particular, a mathematical model that, on a more abstract level, captures the fundamental dynamic structure of all the observed mechanisms. On the basis of this model, the emergence and evolution of local clusters can be described. Also this model has given that the knowledge sharing between firms has an important role to firms and cluster' growth.
In a bankruptcy prediction model, the accuracy is one of crucial performance measures due to its significant economic impacts. Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. In this paper, we analyze the performance of boosted neural networks for improving the performance of traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.
Innovation is broadly defined as the creation or adoption of new ideas and technologies, which has become an instrumental tool to determine the success and development level of a country as it leads to competitiveness and productivity of companies. Innovation is influenced by many factors including geographic and socio-economic factors as well as a political framework. In fact, innovation is systemic in nature, and it focuses on interactions amongst a nexus of processes such as Research and Development (R&D), production, business, and education, amongst other factors. However, not all innovation ecosystems have the same architectural models or internal collaboration. This paper aims to review the structure of the National Innovation Ecosystem by highlighting the different actions taken by the Government of Mauritius over the years. The multipronged approach of the government will be demonstrated through the different lines of actions to boost the innovation culture and offers a foundation for other small island developing state to follow to be at par with other innovative economies.
Hearing organs have unique characteristics and have a role in processing external sensory signals. Sensory hair cells and nerve fibers in the organ of Corti can be damaged by various causes and they do not regenerate themselves. Medication used for clinical treatment for the inner ear is limited due to the anatomical structure of the inner ear. Photobiomodulation (PBM) is a therapeutic approach that uses various sources of light and the success of PBM therapy is highly reliant on the parameters of the light sources. The positive effects of PBM have been reported in various clinical fields. This paper summarizes the previously reported research on PBM for the treatment of hearing damage in animal models.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.853-873
/
2021
In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.
Weakly-supervised learning is a widely adopted approach in video anomaly detection whereby only video labels are utilized instead of expensive frame-level annotations. Since the success of multi-instance learning (MIL), almost all recent approaches are based on maximizing the margin between the set of abnormal video snippets and those of normal video snippets. In this work, we present a simple contrastive approach for weakly supervised video anomaly detection (WS-VAD) with aims to enhance the performance of existing models. The method is generic in nature and introduces a loss function to encourage attraction of output features from the same video class and repel those from different video classes. Experimental results demonstrate our method can be applied to existing algorithms to improve detection accuracy in public video anomaly dataset.
Recent research has shown that deep learning models are vulnerable to adversarial attacks not only in the digital but also in the physical domain. This becomes very critical for applications that have a very high safety concern, such as self-driving cars. In this study, we propose a physical adversarial attack technique for one of the common tasks in self-driving cars, namely segmentation of the urban scene. Our method can create a texture on a wall so that it can be misclassified as a road. The demonstration of the technique on a state-of-the-art cityscape pretrained model shows a fairly high success rate, which should raise awareness of more potential attacks in self-driving cars.
Purpose: The study has identified factors affecting dynamic capabilities and the distribution of competitive advantage under the impact of dynamic capabilities of Vietnamese fintech businesses. Research design, data, and methods: The method used in this study is a survey analysis of 120 Vietnamese fintech businesses to test the hypothesized relationships of the research model as well as evaluate its effectiveness. The study uses the Cronbach alpha analysis, factor analyses, and structural equation modeling to assess the research's measurement and structural models. Results: Research results show that 3 critical success factors: "Capacity to develop financial service ideas," "Ability to develop a platform," and "Business capacity" have a positive impact on "Dynamic capabilities." In addition, the study also evaluates the effect of "dynamic capabilities" on the "competitive advantage" of fintech businesses. Conclusion: Theoretically, this result contributes to discovering new, specific factors affecting the dynamic capabilities of fintech businesses. In practice, the research results are empirical evidence of the distribution of competitive advantages of Vietnamese Fintech businesses and their impact on dynamic capabilities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.