• Title/Summary/Keyword: Subway tunnel

Search Result 382, Processing Time 0.031 seconds

Experimental Study for the Capacity of Ordinary and Emergency Ventilation System in Deeply Underground Subway Station (대심도 지하역사 승강장 및 대합실 평상시/비상시 급·배기 풍량에 대한 실험적 연구)

  • Jang, Yong-Jun;Lee, Ho-Seok;Park, Duck-Shin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.579-587
    • /
    • 2012
  • Shin-gumho station in Seoul underground subway have been selected to be experimentally investigated and analyzed for the real air supply & exhaust capacity compared to the original capacity of ordinary and emergency condition. The depth of Shin-gumho station is 43.6m which consists of the island-type platform ($8^{th}$ floor in underground) and a two-story lobby (first & second floor in underground). An emergency staircase connects between the platform and the lobby. Hot-wire anemometer, capture hood, wind vane & velocity meter and data acquisition systems are employed to perform the automatic measurement in this experiment. For ordinary case, air supply and exhaust capacity in the lobby were reduced by 34% and 46% compared to the original capacity, respectively. Air supply and exhaust capacity in the platform were reduced by 66% and 38%, respectively. For emergency case, air supply in the lobby was reduced by 42% and air exhaust in the platform was reduced by 28% compared to the original capacity. Therefore, air pollution in the station is expected to be worse in the ordinary environment and smoke control capability in the platform will be weakened in case of fire emergency.

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

A study on the feasibility assessment model of urban utility tunnel by analytic hierarchy process (계층의사분석 기법을 적용한 도심지 공동구 타당성 평가모델 연구)

  • Chung, Jee-Seung;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.131-144
    • /
    • 2018
  • The urban center of a large city has a high concentration ratio of population, commerce, and traffic. Therefore, the expected effect is high from the introduction of the urban utility tunnel and it also has sufficient economic feasibility considering life cycle cost. Moreover, the construction cost can be greatly reduced if it is included in a large underground development such as a subway or a complex transfer center construction. However, it is not reflected in actual underground development plan. When planning a urban utility tunnel in Korea, it is expected to have difficulties such as the cost of relocation of the existing Life-Line, conflicts among the individual facility institutions, procurement of construction resources and sharing. Furthermore, it is possible to promote the project only if a consensus is drawn up by a collective council composed of all facilities and project developers. Therefore, an optimal alternative should be proposed using economic analysis and feasibility assessment system. In this study, the analytic hierarchy process (AHP) is performed considering the characteristics of urban areas and the importance of each indicator is quantified. As a result, we can support reasonable design capacity optimization using the feasibility assessment system.

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

Flow control of air blowing and vacuuming module using Coanda effect (코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The efficiency of railway track cleaning vehicle for eliminating fine particulate matter (PM10 and PM2.5) in a subway tunnel depends strongly on the structure of the air blowing and suction system installed under the train. To increase the efficiency of underbody suction system, this paper proposes a novel method to use the Coanda effect for the air blower and dust suction module. In particular, through Computational Fluid Dynamics (CFD) analysis, the flow control device induced by the Coanda effect enables an increase in the overall flow velocity and to stabilize the flow distribution of the suction module at a control angle of $90^{\circ}$. In addition, the flow velocity drop at the edge of the air knife-type blower can be improved by placing small inserts at the edge of the blower. Those 4 modular designs of the dust suction system can help remove the dust accumulated on the track and tunnel by optimizing the blowing and suction flows.

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Evaluation on Damage Effect according Displacement Behavior of Underground Box Structure (지하박스구조물의 변위거동에 따른 손상영향 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.565-570
    • /
    • 2024
  • Recently, due to adjacent excavation work such as new buildings and common tunnel expansion concentrated around the urban railway, deformation of the underground box and tunnel structure of the urban railway built underground has occurred, and as a result, repair and reinforcement work is frequently carried. In addition, the subway is responsible for large-scale transportation, so ensuring the safety and drivability of underground structures is very important. Accordingly, an automated measurement system is being introduced to manage the safety of underground box structures. However, there is no analysis of structural damage vulnerabilities caused by subsidence or uplift of underground box structures. In this study, we aim to analyze damage vulnerabilities for safety monitoring of underground box structures. In addition, we intend to analyze major core monitoring locations by modeling underground box structures through numerical analysis. Therefore, we would like to suggest sensor installation locations and damage vulnerable areas for safety monitoring of underground box structures in the future.

A Study on Characteristics of Urethane Polymer as Injection Material for Ground Improvement

  • Chun, Byung-Sik;Park, Heung-Kyu;Ryu, Dong-Sung
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.99-108
    • /
    • 1996
  • The physical and chemical properties of polyurethane-yieding twofomponent liquid injection mixture and those of the resulting polyurethane solid foam for chemical grouting are investigated. The chemical experiments on the factors influencing the properties of polyurethane show that the behaviors of polyurethane-yielding liquid material and those of the produced polyurethane solid foam are greatly affected by the ground conditions such as temperature, water content and density of soil. The ground reinforcing and water -blocking effects of polyurethane grouting are examined through field case history of tunnel ericavati on of the subway under construction.

  • PDF

Study on Adsorption of Carbon Dioxide in Cabin Using Chamber (챔버를 이용한 객실 이산화탄소 흡착 연구)

  • Cho, Young-Min;Lee, Ji-Yun;Choi, Jin-Shik;Kwon, Soon-Bark;Park, Duck-Shin;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1309-1314
    • /
    • 2011
  • People spend approximately 80 ~ 90 % of their time in various kinds of indoor spaces. And, in metropolitan area, most people spend more than 1 hour in public transportation everyday. For this reason, people's interest in the indoor air quality is drastically increasing. Among various indoor air pollutants, $CO_2$ is one of the most severe environmental concerns. Ventilation is commonly used to keep low $CO_2$ concentration in the passenger cabin. However, ventilation may worse the indoor air quality problem in case of subway because the tunnel is seriously polluted by particulate matters. In this study, an alternative way to remove $CO_2$ was suggested. The adsorption of $CO_2$ by $CO_2$ adsorbent was studied. Zeolite modified with base was prepared, and $CO_2$ removal performance was tested in $4m^3$ and $24m^3$ environmental chambers. It was found that $CO_2$ adsorbent could effectively remove $CO_2$ in the chambers.

  • PDF