• 제목/요약/키워드: Subway pumping

검색결과 13건 처리시간 0.02초

서울시 지하철구간내 지하수위강하에 따른 지하공간 환경오염 감시의 필요성 및 대책

  • 이기철;김윤영;이주영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.167-172
    • /
    • 2002
  • Seoul subway system has been constructed to solve traffic difficulties of Seoul metropolitan, and now is the major public transportation. However, the more line has added in the system the deeper the bottom of the tunnel base. And a huge amount of groundwater along the line has seeping into the tunnel. Several subway stations has pumping system to extract the groundwater to the outside and consequently, groundwater table along the line has declined gradually. Groundwater table has dropped about 40 meters at some areas, There was some study for the proper usage of the abstracted groundwater and the project to use the groundwater has launched already by the local government. However. more serious problem is expected on quality degradation of soil and groundwater as the decline of groundwater table along the subway line. This study suggests that the detailed groundwater environmental study should be made as soon as possible for this. If there is any pollution leaking at the surface area of the groundwater depression, the pollution will be seep into the subway tunnel in some day even though the time will be different with the soil material and hydraulic characteristics of the aquifer. And the polluted area of the soil and groundwater would be enlarged along the pathway The study on possibility of the soil subsidence and reducing surface water flow in small creek were also needed. This study suggest one of the counter measurement that restoring the declined groundwater table after groundwater environmental study

  • PDF

Groundwater system Investigation of the Cheonggyecheon watershed Area

  • Choi, Doo-Hyung;Yang, Jae-Ha;Jun, Seong-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.326-329
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of the groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze the influence on the‘groundwater’ below the Cheonggyecheon watershed by the‘maintenance water’on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and the amount of leakages into subway stations and its influence on the groundwater system. Results show that groundwater level was influenced by the direction and depth of subway tunnel. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in the Cheonggyecheon watershed.

  • PDF

Technical-Economical Evaluation of Chain Vertical Alignment in Underground Urban Subways: The Case of Qom Subway, Line A

  • Abdi Kordani, Ali;Mehrara Molan, Amirarsalan
    • International Journal of Railway
    • /
    • 제7권2호
    • /
    • pp.35-39
    • /
    • 2014
  • Urban subways are one of the main parts of urban transportation networks in every city that always requires much attention in order to improve its efficiency in aspects of safety, reliability speed and costs. As the viewpoint of costs, an accurate design, especially design of vertical alignment, can have a dominant role to reduce the costs of urban railway projects. This paper seeks to evaluate the advantages and disadvantages of designing chain vertical alignment for urban subways in compare to flat vertical alignment. To achieve this goal, line A of Qom subway in Iran was selected as a case study in this research. Five parameters considered in the technical-economical evaluation: (1) energy consumption, (2) rolling stock, (3) operation, (4) civil works and geotechnical and (5) hydrological, drainage and pumping. According to the results, a power saving of about 40% have been estimated in the chain vertical alignment for the train without regenerative braking in compare with the flat vertical alignment, although the power saving was calculated less than 10% for the train with regenerative braking. Finally it was found that due to the modern rolling stock technology, the chain vertical alignment represents fewer advantages in compare to the past years.

도심지역 지하수관리를 위한 지하수환경 모니터링

  • 이진용;최미정;이명재;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.277-279
    • /
    • 2002
  • In late of the 1980's, dramatic increase in water use caused over-exploitation of groundwater and deterioration of water quality in urban areas. To monitor quantity of groundwater resources and their qualities, local groundwater monitoring networks were established. Groundwater resources in urban areas are affected by various human activities including underground building construction (subway), pumping for water use, and pavements. Detailed analysis of the monitored groundwater data would provide some good implications for optimal and efficient management for groundwater resources in the urban area.

  • PDF

강관압입후 슬롯 홀을 갖는 비개착 터널공법의 현장적용에 관한 연구 (A Study on Sites Application of Non-open-cut Tunnel Method with Slot Holes in Steel Pipe Pumping)

  • 채영석;송관권;민인기
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.47-51
    • /
    • 2015
  • In the study, a new non-open cut tunnel steel pipe method using slot hole has been developed. As is overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the steel pipe pumping system with slot holes which, by means of formation slot holes between each steel pipe, applied to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways as numerical analysis and site test. The new method was applied to the construction of a 11.5m wide, 7.4m high and 50m long section that passes side subway and large buildings in inner city. By applying the new method, tunnel construction was successfully completed in 6 months. It decreases the construction period to 30% compared to that of conventional methods, and ground was almost negligible.

Groundwater Investigation of the Cheonggyecheon Watershed Area

  • Choi, Doo-Hyung;Yang, Jea-Ha;Jun, Sung-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.323-327
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of tile groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze of the influence to the 'groundwater' below the Cheonggyecheon watershed by the 'surface water' on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and tile amount of leakages into subway stations and its influence on the groundwater system of the Cheonggyecheon. Results show that groundwater level was influenced by the direction and depth of a 녀bway station. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in Cheonggyecheon.

  • PDF

서울지역 지하수시스템의 수문지질학적 특성 분석을 위한 지리정보시스템의 활용 (GIS Application to Urban Hydrogeological Analysis of Groundwater System in Seoul Area)

  • 김윤영;이강근
    • Spatial Information Research
    • /
    • 제7권1호
    • /
    • pp.103-117
    • /
    • 1999
  • 도시지역에서 지하수 산출특성, 흐름 및 오염현상은 인위적인 양수, 지하구조물, 다양한 오염원 지면 포장으로 인한 지하수 함양의 국지적 변동 등의 영향을 받는 매우 복잡한 특성을 가진다. 서울지역 지하수시스템을 분석하기 위해 지리정보시스템 환경에서 수문지질학적 데이터베이스를 구축하였다. 지하수 수위변화의 주요인은 한강수계, 지하철 지형, 강우 등이고 이들을 이용하여 지하수시스템에 대한 영향을 분석하였다. 그리고 그 자료와 분석결과를 ARC/INFO에 데이터 베이스로 저장하고 실세계의 현상과 비구 분석하였다. 구축된 내용은 지하수 오염원의 분포, 대수층의 수리상수, 한강수위 변화에 대한 지하수 영향간 지하철 역사의 대규모 양수로 인한 지하수시스템의 변화 둥이다. 자료의 특성에 맞는 자료 형태로 저장하고 표현할 수 있도록 하였다.

  • PDF

지하철 노선 지하수 양수량 및 상수도 노선, 누수량을 고려한 청계천 유역 물순환 해석 (Hydrologic Cycle Analysis of Cheonggye-cheon Watershed Considering Subway, Groundwater Pumping and Leakage Effects)

  • 노성진;김현준;장철희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.174-179
    • /
    • 2006
  • 본 연구에서는 지하철 노선, 지하수 양수량 및 상수도 누수량 등 도시유역에서 물순환에 큰 영향을 미치는 인공적 요소들을 분포형 수문모형에 반영하여 물순환을 모의하였다. 분포형 수문모형으로는 일본토목연구소에서 개발된 WEP 모형을 사용하였다. 입력자료 구축시 지하철 노선을 따라서 제1투수층, 제1난투수층, 제2투수층의 투수계수를 낮게 설정하여 지하철 노선의 영향을 반영하였으며, 지하철역 및 구별 지하수 양수량, 상수도 누수량을 모형의 입력자료로 구축하였다. 모의결과를 서울시 지하수관측공의 실측 자료와 비교하여 양호한 결과를 얻을 수 있었으며, 유역 스케일에서의 지하수위 분포양상을 모의할 수 있었다. 지하철 노선, 지하수 양수량, 상수도 누수량 등을 고려, 미고려시를 별도로 모의하여 각각 요소가 물순환에 미치는 개별적 종합적 영향에 대해 평가하였다.

  • PDF

분당선 한강 하저터널의 방재시스템 (Preventing disaster system of the subaqueous tunnel under the Han river in the Bundang railway)

  • 김용일;황낙연;윤영훈;지홍근;장성욱;김동현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.308-327
    • /
    • 2004
  • As use of tunnels and subways increase there also are accidents proportionate to it. Daegu Subway Station fire, Hongjimoon tunnel fire led people to be conscious of disaster protection and as a result, there is a trend to adopt standards for fire protection. Accordingly, this thesis is focused on investigating various fire and water protection related issues for subaqueous tunnel under Ran river. The thesis developed evacuation and disaster prevention plan as fire level increases and have identified the suitability of disaster prevention through evacuation and fire simulation, countermeasure of a water leakage during construction and operation considering the subaqueous tunnel. And we selected EPB shield TBM equipment considering the ground condition and effect of boring hole, and accomplished reasonable water protection design through setting goals using event-tree method, as well as examining model test of boring hole and flooding in heavy rain. Also included structured total system consist of water leakage sensing system, water protection gate, pumping system and fire protection system to respond systematically in emergency.

  • PDF

도농복합지역 지하수 함양과 배출에 대한 연구 (Groundwater Recharge and Discharge in the Urban-rural Composite Area)

  • 이병선;홍성우;강희준;이지성;윤성택;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권2호
    • /
    • pp.37-46
    • /
    • 2012
  • This study was conducted to identify groundwater recharge and discharge amounts of a representative urban-rural composite area located in Yongin city, Kyounggi-do, Korea. Groundwater recharge would be affected by mainly two processes in the study area: rainfall and leakage from public water pipelines including water-supply and sewage system. Groundwater recharge rate was estimated to be 13.5% by applying annual groundwater level data from two National Groundwater Monitoring Stations to the master regression curve method. Subsequently, the recharge amounts were determined to be $13,253{\times}10^3m^3/yr$. Leakage amounts from water-supply and sewage system were estimated to be $3,218{\times}10^3$ and $5,696{\times}10^3m^3/yr$, respectively. On the whole, a total of the recharge amounts was $22,167{\times}10^3m^3/yr$, of which 60% covers rainfall recharge and 40% pipeline leakage. Groundwater discharge occurred through three processes in the composite area: baseflow, well pumping, and discharge from urban infrastructure including groundwater infiltration into sewage pipeline and artificial extraction of groundwater to protect underground facilities from submergence. Discharge amounts by baseflow flowing to the Kiheung agricultural reservoir and well pumping were estimated to be $382{\times}10^3$ and $1,323{\times}10^3m^3/yr$, respectively. Occurrence of groundwater infiltration into sewage pipeline was rarely identified. Groundwater extraction amounts from the Bundang subway line as an underground facility were identified as $714{\times}10^3m^3/yr$. Overall, a total of the discharge amounts was determined to be $2,419{\times}10^3m^3/yr$, which was contributed by 29% of artificial discharge. Even though groundwater budget of the composite area was identified to be a surplus, it should be managed for a sound groundwater environment by changing deteriorated pipelines and controlling artificial discharge amounts.