• 제목/요약/키워드: Subway platform

검색결과 220건 처리시간 0.024초

상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석 (WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STAT10N CAUSED BY PASSING TRAINS)

  • 이명성;이상혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.64-67
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique is adopted considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel of platform are included in a computational domain and detailed shape of train is also modeled Numerical analyses were conducted on five operational condition which are different velocity variation of subway train, existence of stationary train and passing each other trains. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation was found to be satisfactory to various foreign standards.

  • PDF

서울시 지하철 승강장의 스크린도어 설치 전·후 PM10 오염원의 기여도 비교 연구 (A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors)

  • 이태정;전재식;김신도;김동술
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.543-553
    • /
    • 2010
  • Almost five million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan. As the subway system is typically a closed environment, indoor air pollution problems frequently occurs and passengers complain of mal-health impact. Especially $PM_{10}$ is well known as one of the major pollutants in subway indoor environments. The purpose of this study was to compare the indoor air quality in terms of $PM_{10}$ and to quantitatively compare its source contributions in a Seoul subway platform before and after installing platform screen doors (PSD). $PM_{10}$ samples were collected on the J station platform of Subway Line 7 in Seoul metropolitan area from Jun. 12, 2008 to Jan. 12, 2009. The samples collected on membrane filters using $PM_{10}$ mini-volume portable samplers were then analyzed for trace metals and soluble ions. A total of 18 chemical species (Ba, Mn, Cr, Cd, Si, Fe, Ni, Al, Cu, Pb, Ti, $Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${SO_4}^{2-}$) were analyzed by using an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the source of particulate matters. $PM_{10}$ for the station was characterized by three sources such as ferrous related source, soil and road dust related source, and fine secondary aerosol source. After installing PSD, the average $PM_{10}$ concentration was decreased by 20.5% during the study periods. Especially the contribution of the ferrous related source emitted during train service in a tunnel route was decreased from 59.1% to 43.8% since both platform and tunnel areas were completely blocked by screen doors. However, the contribution of the fine secondary aerosol source emitted from various outside combustion activities was increased from 14.8% to 29.9% presumably due to ill-managed ventilation system and confined platform space.

천연 다당류 먼지포집제를 이용한 지하철 터널 내 PM10 제어에 대한 연구 (A Study on PM10 Control in Subway Tunnels Using Natural Polysaccharide Dust Collecting Agent)

  • 이한섭;황수진;황현석
    • 한국환경보건학회지
    • /
    • 제43권2호
    • /
    • pp.122-129
    • /
    • 2017
  • Objectives: Most of the $PM_{10}$ in subway stations is spread by the train-induced wind from the tunnels. Therefore, in order to improve air quality in subway stations, it is important to remove the $PM_{10}$ from the tunnels. After the installation of PSD (platform screen doors), the influence of train-induced wind and $PM_{10}$ at the platform has decreased, but is estimated to have increased in subway tunnels. This study was conducted to investigate the control of $PM_{10}$ in subway tunnels by applying a 500-fold diluted solution mixed with a humectant using a natural polymer. Methods: For this purpose, we tested the dust reduction effect in a laboratory and corrosion test and water pollution using fish and aquatic plants for the natural dust collecting agent. In the tunnel of a subway station, we used the natural dust collecting agent over 15 days. The study was carried out on $PM_{10}$ control during operation, which accounts for more than 70% of subway dust. Results: As results, the natural dust collecting agent exhibited an excellent dust control effect, and it was safe for water quality and soil. It showed the effect of controlling $PM_{10}$ in the subway tunnel by 49.5- 64.7% over 15 days. The use of the dust collecting agent for the control of $PM_{10}$ could be confirmed in the subway. Conclusion: It is necessary to clearly explain the major portions of chemical components contained in $PM_{10}$ to figure out the characteristics of $PM_{10}$ and to develop effective reduction measures to decrease the adverse effects of $PM_{10}$ in the subway.

지하철 승강장과 개찰구 유형별 대피안전성 분석 (Evacuation safety analysis depending on the type of subway platform and ticket barrier)

  • 박병직;박일규;유용호
    • 한국터널지하공간학회 논문집
    • /
    • 제17권3호
    • /
    • pp.237-242
    • /
    • 2015
  • 현대사회가 빠르게 발전함에 따라 지하철은 도시의 대표적인 이동수단으로 발전해왔다. 그러나 2003년 대구지하철 화재사고를 통하여 지하철의 인명안전과 방재의 중요성 인식되었으며, 현재까지 많은 연구가 진행되어 왔다. 특히 지하철 전동차 내장재의 난연화 불연화와 승강장의 스크린 도어 및 안내표시 등이 대표적 결과라고 볼 수 있으나, 지하철 대피기준에 대한 연구의 진행은 미진하다. 이에 본 연구에서는 지하철 대피기준 개선의 기초연구를 진행하였다. 그러나 복잡하고 다양한 지하철 전체를 대상으로 하기에는 어려움이 있어, 기존의 연구 중 승강장을 유형화 한 연구를 참고하여 개찰구를 유형화 하였다. 기존 연구의 지하철 역사 승강장의 유형 10개와 본 연구의 개찰구의 유형 8개를 정리하여, 1~4호선 지하철 역사 중 가장 많은 유형을 선정하여 대피 시간을 계산하였다. 대피시간 계산결과가 지하철의 대피 기준 시간 6분을 초과하는 것으로 나타남에 따라 지하철 대피 시간에 대한 기준을 개선하거나 추가적인 조건이 필요하다고 판단되었다. 따라서 지하철 역사에 안전을 위한 시설 및 방재대책이 요구된다.

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권2호
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).

지하철 승강장 스크린도어 설치에 따른 사인시스템에 관한 연구 (A Study on The Sign System Following Installation of Screen Doors in Subway Platforms)

  • 신홍재;박희면
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1567-1574
    • /
    • 2006
  • To prevent safety accidents such as injury or death from falling by blocking platforms from trains, the Seoul Metropolitan Subway Corp. have gradually installed screen doors in platforms of 115 subway stations in Seoul on lines 1, 2, 3, and 4. Installation in nine areas among those has been completed and screen doors are being operated as a model operation. Traffic signs should be clear for users. The essential functions of signs should be fully investigated from the aspect of user as well as the visual beauty and recognition. Signs should be able to provide users with information regarding location, position, directions, etc. Particularly, safety and convenient signs should be visually and sensually correlated. However, the entire screen doors in platforms installed in line 2 subway in Seoul are used for commercial advertisement, consequently, the functions and roles as public signs are not fulfilled aggravating inconvenience for users. In this study, cases have been studied to investigate requirements for user-oriented sign system in platform and public sign space to fulfill the functions of sign system in platform. Using an anthropometry approach, the study aimed to obtain the space to install the sign system and to systemize necessary and sufficient conditions for user-oriented system for platform in which screen doors have been installed using. The study suggests fundamental information to obtain the space of public sign system on the entire screen door.

  • PDF

지하철 화재시 제연모드에 따른 열 및 연기 배출 특성 연구 (A Study on Heat and Smoke Exhaust Characteristics from the Subway Fire for Different Ventilation Modes)

  • 장희철;윤경범;박원희;김태국
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.37-42
    • /
    • 2008
  • 본 연구는 지하철에서 화재발생시 최적의 제연모드 예측을 목적으로 수치해석을 수행하였다. 현재 국내 지하철 화재발생시 제연모드는 승강장 내 화재구역 배기, 비화재구역 급기 또는 정지로 설정 되어있다. 수치해석 조건은 2가지 국내 비상시 제연모드 및 발화 4분(승강장 피난허용시간, NFPA 130) 이전까지 승강장에서 배기를 하며, 발화 4분이 후 터널 배기로 전환되는 스위치모드의 3가지 경우에 대하여 비교 분석하였다. 승객 호흡높이(1.7 m)를 기준으로 열, 일산화탄소 및 가시거리를 비교하였다. 수치해석 결과 급기팬 작동은 연기를 교란시키고 확산시킬 수 있으며, 또한 승강장 및 터널 제연모드로 작동할 경우 승강장의 제연모드로만 작동한 경우에 비하여 연기 배출에 효과적임을 확인할 수 있었다.

섬식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압 해석 (WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF ISLAND PLATFORMS IN A SUBWAY STATION CAUSED BY A PASSING TRAIN)

  • 이명성;원찬식;허남건
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in island platform caused by a passing train are investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique adopted for the train movement. To achieve more accurate results, detailed shape of train is included in a computational domain and the entrance and exit tunnel of platform are also modeled. Numerical analyses are conducted on three operational conditions of different velocity variation.

열차 운행에 따른 상대식 승강장에서 지하철 승강장 스크린 도어 풍압해석 (THE PRESSURE-TRANSIENT ANALYSIS ON THE PLATFORM SCREEN DOORS OF THE SIDE PLATFORMS IN A SUBWAY STATION WITH VARIOUS OPERATING CONDITIONS)

  • 이명성;안혁진;원찬식;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.283-289
    • /
    • 2008
  • The pressure-transient on platform screen doors in side platforms caused by passing trains with various operating conditions have been investigated numerically. The transient compressible three-dimensional flow simulations are performed with actual operating conditions of two trains by adopting moving mesh technique. To achieve more realistic results, the detailed shape of train and the subway station including tunnels connecting the adjacent stations are represented in the computational domain. Numerical analyses are carried out for cases considering arriving/passing/departing train with or without train stopped on the opposite track, and both trains on the move in opposite direction. From the numerical results, the maximum pressure on the platform screen doors, which is predicted in the case of two passing trains, satisfied the design standards for similar stations.

  • PDF

열차 운행에 따른 상대식 승강장에서 지하철 승강장 스크린 도어 풍압해석 (THE PRESSURE-TRANSIENT ANALYSIS ON THE PLATFORM SCREEN DOORS OF THE SIDE PLATFORMS IN A SUBWAY STATION WITH VARIOUS OPERATING CONDITIONS)

  • 이명성;안혁진;원찬식;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.283-289
    • /
    • 2008
  • The pressure-transient on platform screen doors in side platforms caused by passing trains with various operating conditions have been investigated numerically. The transient compressible three-dimensional flow simulations are performed with actual operating conditions of two trains by adopting moving mesh technique. To achieve more realistic results, the detailed shape of train and the subway station including tunnels connecting the adjacent stations are represented in the computational domain. Numerical analyses are carried out for cases considering arriving/passing/departing train with or without train stopped on the opposite track, and both trains on the move in opposite direction. From the numerical results, the maximum pressure on the platform screen doors, which is predicted in the case of two passing trains, satisfied the design standards for similar stations.

  • PDF