• 제목/요약/키워드: Subunit I

검색결과 459건 처리시간 0.032초

Cytochrome c oxidase subunit 1과 RAPD 분석에 의한 한국 전복속의 계통 연구 (Phylogenetic Study of Genus Haliotis in Korea by Cytochrome c Oxidase Subunit 1 and RAPD Analysis)

  • 서용배;강성철;최성석;이종규;정태혁;임한규;김군도
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.406-413
    • /
    • 2016
  • 전복은 전복속(Haliotis)에 속하며 전 세계적으로 식품산업에서 중요한 복족류 연체동물이다. 우리나라에는 6개종; 북방전복(Haliotis discus hannai), 둥근전복(Haliotis discus discus), 왕전복(Haliotis madaka), 말전복(Haliotis gigantea), 오분자기(Haliotis diversicolor diversicolor), 마대오분자기(Haliotis diversicolor supertexta)가 보고되어 있다. 이 연구에서는 우리나라 해역에 서식하는 중ㆍ대형 전복과 4종인 북방전복, 둥근전복, 왕전복, 말전복의 유전학적 유연관계를 분석하기 위하여 미토콘드리아의 cytochrome c oxidase subunit I (COI) 유전자와 Random Amplified Polymorphic DNA (RAPD) 분석법을 실시 하였다. 본 연구의 결과 COI 유전자 분석과 RAPD 분석을 활용하면 4종의 전복 중 북방전복, 둥근전복, 왕전복을 한 그룹으로 나머지 한 그룹을 말전복으로 구분하는 종 분류는 명확히 구분할 수 있었다. 이러한 결과는 전복 교잡육종을 이용한 수출용 전복 신종자 개발에 있어 주요 대상종인 전복과 4종에 대한 유전적 근연 관계를 규정함으로써 향후 교잡육종 연구의 기초 자료를 제공할 수 있을 것으로 사료된다.

Genetic Diversity and Gene Flow Patterns in Pollicipes mitella in Korea Inferred from Mitochondrial DNA Sequence Analysis

  • Yoon, Moongeun;Jung, Ju-Yeon;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제16권4호
    • /
    • pp.243-251
    • /
    • 2013
  • Genetic diversity and gene flow patterns in Pollicipes mitella were investigated with a nucleotide sequence analysis of 514 base pairs from the mitochondrial cytochrome c oxidase subunit I gene (COI) in 124 samples collected from six Korean populations. In total, 59 haplotypes were defined by 40 variable nucleotide sites in the COI region. The haplotypes had shallow haplotype genealogy and no geographic associations. All populations had high haplotype diversity (0.909 to 0.979) and low nucleotide diversity (0.0055 to 0.0098). The haplotypes with recently diverged nucleotides were distributed by long-range larvae dispersal among regional populations. The pairwise fixation indices ($F_{ST}$) estimated with the exact test and migration rates indicate that substantial gene flow has occurred among populations as a result of sea currents, except between the Uljin (East Sea coast) and other Korean populations. This suggests that significant genetic differentiation and low migration rates have affected the Uljin population.

Unveiling mesophotic diversity in Hawai'i: two new species in the genera Halopeltis and Leptofauchea (Rhodymeniales, Rhodophyta)

  • Erika A., Alvarado;Feresa P., Cabrera;Monica O., Paiano;James T., Fumo;Heather L., Spalding;Celia M., Smith;Jason C., Leonard;Keolohilani H., Lopes Jr.;Randall K., Kosaki;Alison R., Sherwood
    • ALGAE
    • /
    • 제37권4호
    • /
    • pp.249-264
    • /
    • 2022
  • Two genera of the Rhodymeniales, Halopeltis and Leptofauchea, are here reported for the first time from the Hawaiian Islands and represent the deepest records for both genera. Molecular phylogenetic analyses of cytochrome oxidase subunit I (COI), rbcL, and large subunit ribosomal DNA (LSU) sequences for Hawaiian specimens of Leptofauchea revealed one well-supported clade of Hawaiian specimens and three additional lineages. One of these clades is described here as Leptofauchea huawelau sp. nov., and is thus far known only from mesophotic depths at Penguin Bank in the Main Hawaiian Islands. L. huawelau sp. nov. is up to 21 cm, and is the largest known species. An additional lineage identified in the LSU and rbcL analyses corresponds to the recently described L. lucida from Western Australia, and is a new record for Hawai'i. Hawaiian Halopeltis formed a well-supported clade along with H. adnata from Korea, the recently described H. tanakae from mesophotic depths in Japan, and H. willisii from North Carolina, and is here described as Halopeltis nuahilihilia sp. nov. H. nuahilihilia sp. nov. has a distinctive morphology of narrow vegetative axes that harbor constrictions along their length. The current distribution of H. nuahilihilia includes mesophotic depths around W. Maui, W. Moloka'i, and the island of Hawai'i in the Main Hawaiian Islands. Few reproductive characters were observed because of the small number of specimens available; however, both species are distinct based on phylogeny and morphology. These descriptions further emphasize the Hawaiian mesophotic zone as a location harboring many undescribed species of marine macroalgae.

Cytochrome oxidase subunit I (COI) DNA sequence divergence between two cryptic species of Oryzias in South Korea

  • In, Dong-Su;Choi, Eun-Sook;Yoon, Ju-Duk;Kim, Jeong-Hui;Min, Jun-Il;Baek, Seung-Ho;Jang, Min-Ho
    • Journal of Ecology and Environment
    • /
    • 제36권3호
    • /
    • pp.159-166
    • /
    • 2013
  • Oryzias latipes and Oryzias sinensis are indigenous species found in Japan, China, and other East Asian countries, including Korea. Based on morphological differences, the species have been classified distinctly. However, the range of morphological characters such as the number of gill rakers, vertebrae, and spots on the lateral body overlaps and is too vague for clear identification, so their classification based on their morphological characteristics remains uncertain. In this study, the mitochondrial cytochrome oxidase subunit I (COI) gene, which is used for DNA barcoding, was applied to clarify interspecific variation of O. latipes and O. sinensis. Intraspecific genetic diversity was calculated to identify correlations with geographic distributions. We studied two species collected from 55 locations in Korea. All individuals carried a 679-base pair gene without deletion or insertion. Between species, 525 base pairs of the gene were shared. The Kimura two parameter (K2P) distance of O. latipes and O. sinensis was 0.41% and 1.39%, respectively. Mean divergence within genera was 23.5%. Therefore, the species were clearly different. The distance between O. latipes and O. sinensis was 14.0%, which is the closest within genera. Interestingly O. latipes from the Japanese and Korean group represented 16.5% distant. These results were derived from geohistorical and anthropogenic environmental factors. The O. latipes haplotypes were joined in only one group, but O. sinensis was divided into two groups, one is found in the Han River and upper Geum River watershed; the other is found in the remaining South Korean watersheds. Further studies will address the causes for geographic speciation of O. sinensis haplotypes.

한국 내 육지플라나리아 간 치토크롬 산화효소의 동정과 계통유전학적 관계 (Identification and Phylogenetic Relationship at Cytochrome Oxidase Subunit I (COI) Gene among Korean Terrestrial Planarian Taxa)

  • 문두호;이영아;허만규
    • 생명과학회지
    • /
    • 제21권7호
    • /
    • pp.939-946
    • /
    • 2011
  • 미토콘드리아 산화효소(COI) 유전자의 서열을 이용하여 한국 내 육지플라나리아의 분류와 계통관계를 규명하였다. 유전자은행에서 Bipaliidae과의 종에 관한 기 발표된 서열을 계통분석을 위해 포함시켰다. 육지 플라나리아의 서열 배당은 387 bp에서 444 bp로 나타났으며 이런 차이는 염기 삽입에 기인하였다. COI 분석에 근거한 계통학적 분지도는 형태적 형질에 의한 결과와 일치하지 않았다. Bipalium nobile가 나머지 분류군(Bipalium adventitium, Bipalium venosum, Bipalium kewense, Bipalium multilineatum)을 포함하는 관계로 나타났다. 내부 가지의 분지군은 강하게 지지되었다(>91%). The phylogenic tree on COI 분석에 의한 계통도는 잘 분리되었다. 이들은 단계원을 형성하였다. 미토콘드리아 산화효소 유전자는 한국 내 육지 플라나리아 분류군을 동정하는데 유력한 도구가 될 수 있다.

Circular Permutation of the DNA Genome of Temperate Bacteriophage $\PhiFC1$ from Enterococcus faecalis KBL 703

  • Kim, Young-Woo;Jang, Se-Hwan;Hong, Bum-Shik;Lim, Wang-Jin;Kim, Chan-Wha;Sung, Ha-Chin;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.457-463
    • /
    • 1999
  • The physical map of bacteriophage $\PhiFC1$ DNA was constructed with the restriction endonucleases SalI, BamHI, EcoRI, XbaI, and AvaI. The 40.5-kb DNA restriction map is shown to be circularly permuted representing the headful packaging mechanism of the phage. The DNA restriction fragments containing the packaging initiation site(pac) was localized on the restriction map and the nucleotide sequences of the region were analyzed. Four open reading frames (ORFs), following one another with the same orientation, were found at the region. The 2nd ORF (ORF-ts) has significant amino acid sequence homologies to the previously known terminase small subunits of other bacteriophages. The putative terminase small subunit gene has a presumptive NTP-hydrolysis motif and a helix-turn-helix motif. The cleavage site for the first round of packaging was found to be located at the coding sequence of the putative terminase small subunit gene. The fourth ORF, even if partially sequenced, has a good amino acid sequence homology to the portal vertex proteins of other bacteriophages representing the evolutionarily conserved arrangements of genes near the pac site of this bacteriophage, $\PhiFC1$.

  • PDF

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Cooperative Activity of Subunits of Human Ferritin Heteropolymers in Escherichia coli

  • Lee, Jung;Seo, Hyang-Yun;Jeon, Eun-Soon;Park, Ok-Soon;Lee, Kang-Min;Park, Chung-Ung;Kim, Kyung-Suk
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.365-370
    • /
    • 2001
  • We constructed a comparative expression system in order to produce recombinant human ferritin homo- and heteropolymers in Escherichia coli. Human ferritin H-(hfH) and L-chain (hfL) genes were expressed without amino acid changes under the control of a tac promoter. Ferritin heteropolymers of varying subunit composition were also produced by combining two different expression systems, a bicistronic expression system and a coplasmid expression system. As a result, recombinant H-chain ferritin and ferritin heteropolymers were catalytically active in forming iron core in vivo. In particular, the ferritin heteropolymer that is composed of 7% H-subunit and 93% L-subunit was capable of forming an iron core of the protein, while the L-chain ferritin homopolymer was inactive in vivo. This result indicates that the two H-subunits (i.e., 7% H-subunit content) are important to keep ferritin active in the cells. In addition, human ferritins were identified as the major iron binding proteins in the transformed cells. Also, the amount of iron bound to the recombinant ferritins was proportional to the H-subunit content in ferritin heteropolymers in vivo.

  • PDF

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.