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Abstract
Genetic diversity and gene flow patterns in Pollicipes mitella were investigated with a nucleotide sequence analysis of 514 base 
pairs from the mitochondrial cytochrome c oxidase subunit I gene (COI) in 124 samples collected from six Korean populations. In 
total, 59 haplotypes were defined by 40 variable nucleotide sites in the COI region. The haplotypes had shallow haplotype geneal-
ogy and no geographic associations. All populations had high haplotype diversity (0.909 to 0.979) and low nucleotide diversity 
(0.0055 to 0.0098). The haplotypes with recently diverged nucleotides were distributed by long-range larvae dispersal among 
regional populations. The pairwise fixation indices (FST) estimated with the exact test and migration rates indicate that substantial 
gene flow has occurred among populations as a result of sea currents, except between the Uljin (East Sea coast) and other Korean 
populations. This suggests that significant genetic differentiation and low migration rates have affected the Uljin population.
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Introduction

Molecular studies have shown geographic diversity in the 
genetic associations of several marine taxa. Some marine spe-
cies appear to be panmictic across large geographic ranges 
(Lessios et al., 2003; Klanten et al., 2007; Horne et al., 2008; 
Reece et al., 2010), whereas others exhibit genetic heterogene-
ity on a small scale (Barber et al., 2006; Gerlach et al., 2007). 
These genetically driven mechanisms are affected by geogra-
phy, and may be influenced by dispersal and self-recruitment 
that are determined by oceanographic features such as sea cur-
rents, hydrological conditions, and physical barriers (Doyle et 
al., 1993; Hsieh et al., 2010; Hong et al., 2012). Sea currents 
can have dynamic effects on the population genetics of marine 
invertebrates, and ocean currents are responsible for plank-
tonic larvae dispersion on a large scale. Alternatively, currents 
can be an invisible physical barrier to gene flow (Palumbi, 
1994).

Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia, 
Thoracica) is a type of barnacle. Barnacles are a major crusta-
cean group and live on intertidal zone rocks, shells, and other 
hard substrates (Lim and Hwang, 2006). The genus Pollicipes 
is distributed in the South and East China Seas (Chan, 2006). 
The geographical distribution and abundance have been af-
fected by climate and oceanographic conditions, including 
currents and upwelling events (Chan, 2006). Unfortunately, 
the intertidal community dynamics and distribution of P. mi-
tella in Korean coastal areas have not been investigated exten-
sively. The south coast intertidal area has a highly abundant 
population of this species, but the northern portion of the east 
Korean coastline has an extremely low population density. 

The larvae of some marine organisms, including barnacles, 
have high dispersal potential in contrast to the extremely lim-
ited mobility of the adults (Lewis, 1975; Sotka et al., 2004). 
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and sea current patterns is poorly understood. Here, we in-
vestigate the relationship between the dispersal of planktonic 
larvae and ocean structures by assaying genetic population 
data of P. mitella, a marine invertebrate with a long planktonic 
larval stage and a well-documented life history.

In this study, we used a population genetic analysis based 
on mitochondrial sequence variations in P. mitella populations 
in the South and East Sea of Korea to understand the patterns 
of dispersion of its planktonic larvae by coastal currents.

Materials and Methods

Sampling

Pollicipes mitella samples were collected from six rocky 
shore sites located in the eastern (one site) and southern (two 
sites) coastal zones of Korea, and on Jeju Island (three sites) 
in 2011 (Table 1, Fig. 1). The samples were stored at –20°C 
or kept in 100% ethanol at room temperature until analysis. 
Due to the extremely low density and to conserve the natural 
population in the northern east coastline sample (Uljin [ULJ]), 
sample collection was limited to 300 m2 areas and only 11 
samples were found in the collecting area.

Pollicipes pollicipes have a planktonic larvae stage of greater 
than 1 month before they sufficiently develop to settle into 
their sessile life stage (Molares et al., 1994). The larval disper-
sal pattern can lead to homogeneity in geographically distinct 
regional populations. Lewis (1975) estimated that the disper-
sal range of P. pollicipes is 185-930 km, which is limited com-
pared to California Current Balanus glandula larvae, which 
have an estimated dispersal range around several hundred ki-
lometers (Sotka et al., 2004).

Population genetic studies of marine organisms based on 
molecular markers have been used to infer larval dispersal 
mechanisms, with significant information gained on popula-
tion structure and genetic diversity. Nucleotide sequences of 
maternally inherited mitochondrial DNA (mtDNA) genes are 
useful to investigate interspecific and intraspecific genetic 
diversity among closely related taxa, species, or populations 
(Wilson et al., 1985; Avise, 1994). Few studies have used 
population genetic data to determine the dispersal patterns 
of barnacles. The population genetics of P. pollicipes in the 
northeastern Atlantic (Quinteiro et al., 2007), the range of 
Tetraclita rubescens from Bahia Magdalena to Cape Men-
docino (Dawson et al., 2010), and Tetraclita squamosa in East 
Asia (Chan et al., 2007) are influenced by coastal currents and 
hydrological barriers. However, the relationship between Ko-
rean coastal marine mammal intraspecific population genetics 

Fig. 1. Sampling locations of the six Pollicipes mitella populations analyzed in this study (see Table 1 for site names).
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within populations were estimated according to Nei (1987), 
based on Kimura’s two-parameter distance method using K 
and DA in the REAP software (McElroy et al., 1992). Ge-
netic relationships among the 59 haplotypes of Pollicipes mi-
tella were reconstructed using the neighbor-joining method, 
generated with the SEQBOOT and NEIGHBOR options in 
PHYLIP v. 3.6 (Felsenstein, 1993). A bootstrap analysis of 
1,000 replicates evaluated the phylogenetic relationships 
after genetic distance matrix construction based on nucleo-
tide divergences between haplotypes estimated according to 
Nei (1987) and the Kimura two-parameter model (Kimura, 
1980). Bootstrap supports of >50% in the 1000 replicates 
were shown. Neighbor joining was performed and the con-
sensus tree was generated for populations based on haplo-
type frequencies and average nucleotide diversities between 
populations (Saitou and Nei, 1987). The consensus tree was 
generated following the 50% majority rule by CONSENSUS 
in PHYLIP v. 3.6 (Felsenstein, 1993). Pairwise population 
FST values were calculated to estimate genetic differentia-
tion between populations according to Slatkin and Hudson 
(1991) and Tajima and Nei (1984) using the Arlequin soft-
ware version 3.1 (Excoffier et al., 2005). The significance 
of each FST value was tested using 10,000 random permuta-
tions. Analysis of molecular variance (AMOVA) tested pop-
ulation structure with Arlequin ver. 3.1. Migration among the 
six populations, based on mtDNA sequences, was evaluated 
using the software MIGRATE, version 2.4.2 (http://popgen.
dcd.fsu.edu/Migrate-n.html) (Beerli and Felsenstein, 2001). 
Migration rates (M) were estimated with a maximum-like-
lihood approach based on the coalescence theory, and were 
used to investigate possible genealogies based on migration 
events using a Markov chain Monte Carlo approach with 10 
short chains (500 trees used of the 50,000 trees sampled), and 
three long chains (10,000 trees used of the 1,000,000 trees 
sampled). For each chain, the first 10,000 steps were used 
as the burn-in, and adaptive heating was used to ensure an 
independent parameter space.

PCR amplification and sequence analysis

Genomic DNA was extracted using the conventional so-
dium dodecyl sulfate/proteinase K method, followed by or-
ganic extraction and ethanol precipitation (Sambrook and 
Russell 2001). The purified DNA was dried at room tem-
perature and dissolved in TE buffer (10 mM Tris-HCl, 1 mM 
EDTA, pH 8.0). PCR was used to amplify the COI gene with 
newly designed primers based on the complete mitogenomic 
sequence of P. mitella (Lim and Hwang, 2006) available in 
GenBank (AY514042): MitellCOIF (5′-AGACATTATCGC-
GACAATGATTA-3′) and MitellCOIR (5′-GGCACGAG-
TATCCACATCCATT-3′). PCR amplification was performed 
with a DNA Engine thermocycler (MJ Research, Tokyo, Ja-
pan) in 20-µL volumes containing 1-2 µL of genomic DNA, 
2 µM of each primer, 0.25 mM of each dNTP, 1 unit of Taka-
ra LA TaqTM DNA polymerase (Takara Shuzo, Shiga, Japan), 
and 2 µL of 10× LA TaqTM reaction buffer (Takara Shuzo). 
The PCR protocol was as follows: preheating to 94°C for 
5 min followed by 35 cycles of denaturation at 94°C for 30 
s, annealing at 55°C for 30 s, extension at 72 °C for 30 s, 
and a final extension at 72°C for 5 min. The PCR product 
size was verified by 1.5% agarose gel electrophoresis and 
ethidium bromide staining. The PCR product was purified 
using the AccuPrep PCR Purification Kit (Bioneer, Daejon, 
Korea). After cycle sequencing with the ABI PRISM BigDy-
eTM Terminator v3.1 Cycle Sequencing Ready Reaction Kit 
(Applied Biosystems Inc., Foster City, CA, USA), the puri-
fied PCR product was directly sequenced on an ABI 3730xl 
DNA Analyzer (Applied Biosystems Inc.) with the same 
PCR primer set, allowing direct nucleotide sequence analy-
sis of about 500 base pairs (bp) from the P. mitella COI gene.

Data analysis

The sequence data were aligned with DnaSP version 4.90.1 
(Rozas and Rozas, 1997) to determine the COI gene haplo-
types. Haplotype diversity (h) and nucleotide diversity (π) 

Table 1. Sampling sites, sampling dates, geographical coordinates, number of individuals examined (n), haplotypes and nucleotide diversity of 
Pollicipes mitella populations

Sampling site   Abbreviation Date of 
collection

Geographic coordinates
n No. of 

haplotypes
Haplotype 
diversity 
(h ± SD)

Nucleotide 
diversity 

(π)Latitude Longitude

Southern coast of Korean Peninsular
Namhae NHE Mar. 2011 34°43′51.83″N 126°54′29.78″E 30 16 0.924 ± 0.029 0.0055
Chuja-myeon CJM Apr. 2011 33°56′20.16″N 126°18′01.70″E 20 17 0.979 ± 0.025 0.0084

Jeju Island
Yong DuAm YDA Feb. 2011 33°31′34.57″N 126°31′31.78″E 24 17 0.960 ± 0.025 0.0064
Bomok-dong BMD Feb. 2011 33°14′10.79″N 126°35′47.20″E 18 14 0.968 ± 0.029 0.0077
Seongsan SGS Apr. 2011 33°28′06.10″N 126°56′14.12″E 21 14 0.957 ± 0.026 0.0077

Eastern coast of Korean Peninsular
Uljin ULJ Apr. 2011 37°12′05.01″N 129°20′06.10″E 11   7 0.909 ± 0.066 0.0098
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that haplotypes with recently diverged nucleotides have been 
distributed among populations or regions by long-range lar-
val dispersal. The extensive haplotype diversity and limited 
nucleotide diversity of P. mitella populations demonstrated 
in the present study also indicate rapid population growth 
from an ancestral population with a small effective popula-
tion size. This is provided that there was sufficient time for 
haplotype variation recovery via mutation yet not enough 
time for large sequence difference accumulations (Avise, 
2000).

The pairwise population FST estimates made with an exact 
test were generally low (Table 3), suggesting little genetic 
differentiation between population pairs, perhaps attribut-
able to high gene flow. The calculated migration rates also 
indicate substantial gene flow has occurred among these 
populations, except between ULJ and all other populations  

Results and Discussion

We analyzed a 514-bp fragment at the 5′ end of the 
mtDNA COI region in 124 Pollicipes mitella individuals 
from six populations and defined 59 haplotypes (Fig. 2). 
The neighbor-joining tree constructed using the haplotypes 
was shallow and provided no evidence of geographic asso-
ciations (Fig. 2). Among the haplotypes, 44 were found at 
single localities, and the remaining 15 were observed in two 
or more locations (Table 2). This suggests a rapid popula-
tion expansion with considerable sequence differences and/
or high gene flow among populations. 

Haplotype diversity (h) was high in all populations, rang-
ing from 0.909 ± 0.066 (ULJ) to 0.979 ± 0.025 (Chuja-my-
eon [CJM]). Nucleotide diversity (π) was low, ranging from 
0.0055 (Namhae[NHE]) to 0.0098 (ULJ) (Table 1), implying 

Fig. 2. Genetic relationships among 59 haplotypes of Pollicipes mitella were reconstructed using the neighbor-joining method, generated with the 
Seqboot, Neighbor, and Consensus options in PHYLIP v. 3.6 (Felsenstein, 1993). A bootstrap analysis of 1000 replicates evaluated support for phylogenetic 
relationships after construction of a genetic distance matrix based on nucleotide divergences between haplotypes, estimated according to Nei (1987) and 
the Kimura two-parameter model (Kimura, 1980). Bootstrap supports of >50% in 1000 replicates are shown. 
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Table 2. Distribution of mtDNA  COI haplotypes among 6 populations

NHE CJM YDA BMD SGS ULJ Total

H1 - 1 3 3 - - 7
H2 - 1 - - - - 1
H3 - 1 - - - - 1
H4 2 1 - - - - 3
H5 6 3 4 1 3 -             17
H6 - 1 - - - - 1
H7 - 2 - 2 2 - 6
H8 - 1 - - - - 1
H9 - 1 1 1 1 - 4
H10 - 1 - - - - 1
H11 - 1 - - - - 1
H12 - 1 - - - - 1
H13 - 1 - - - 3 4
H14 - 1 - - - - 1
H15 - 1 - - - - 1
H16 - 1 - - - - 1
H17 - 1 - - - - 1
H18 - - - - 3 1 4
H19 - - - - 1 - 1
H20 5 - 2 1 1 2 11
H21 - - - - 1 - 1
H22 4 - 2 - 2 - 8
H23 - - - - 1 - 1
H24 - - 1 - 2 - 3
H25 - - - - 1 - 1
H26 - - - - 1 - 1
H27 - - - - 1 - 1
H28 - - - - 1 - 1
H29 - - - - - 1 1
H30 - - - - - 1 1
H31 - - - - - 2 2
H32 - - - - - 1 1
H33 - - 1 - - - 1
H34 - - 1 - - - 1
H35 - - 1 - - - 1
H36 1 - 1 1 - - 3
H37 - - 1 - - - 1
H38 - - 1 - - - 1
H39 - - 1 - - - 1
H40 1 - 1 2 - - 4
H41 - - 1 - - - 1
H42 - - 1 - - - 1
H43 - - 1 - - - 1
H44 1 - - 1 - - 2
H45 - - - 1 - - 1
H46 - - - 1 - - 1
H47 - - - 1 - - 1
H48 - - - 1 - - 1
H49 - - - 1 - - 1
H50 - - - 1 - - 1
H51 1 - - - - - 1
H52 2 - - - - - 2
H53 1 - - - - - 1
H54 1 - - - - - 1
H55 1 - - - - - 1
H56 1 - - - - - 1
H57 1 - - - - - 1
H58 1 - - - - - 1
H59 1 - - - - - 1

NHE, Namhae; CJM, Chuja-myeon; YDA, Yong DuAm; BMD, Bomok-dong; SGS, Seongsan; ULJ, Uljin.
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(Table 4). The Tsushima Warm Current (TWC) diverges from 
the Kuroshio Current, with the main flow via Jeju Island and 
the South Sea entering the southern part of the East Sea west 
of the Korean peninsula (Senjyu, 1999; Ichikawa and Beard-
sley, 2002). The TWC may transport larvae from Jeju Island 
toward the south coast of the Korean peninsula, near NHE 
and CJM. The distribution of the 59 haplotypes among the 
six P. mitella populations is presented in Table 2. Although 
the observed haplotypes had no geographically specific clus-
ters, 57 different haplotypes were found in the five southern 
populations (NHE, CJM, Yong DuAm [YDA], Bomok-dong 
[BMD], and Seonsan [SGS]), while 4 different haplotypes 
were found in the ULJ populations. A number of individu-
als from almost all populations had H5, H7, H9, H22, H36, 
and H40, but these were not found in ULJ barnacles. These 
results show that composite haplotypes were not distributed 
randomly with respect to geography. Thus, this may lead 
to genetic differences between ULJ and other populations. 
The pairwise population FST estimates (made with the exact 
test) between Uljin (ULJ) and all the other populations were 
relatively large (0.125 to 0.287, P < 0.05), compared with all 
other population pairs (-0.003 to 0.057) (Table 3). This as-
sumption is also supported by the neighbor-joining method 

Fig. 3. Neighbor-joining and consensus tree (insert) of Pollicipes mitella 
populations based on the haplotype frequencies and average nucleotide 
diversities between populations (Saitou and Nei (1987). Nodal numbers 
in the phenogram are bootstrap values based on 1000 replications. BMD, 
Bomok-dong; CJM, Chuja-myeon; NHE, Namhae; SGS, Seongsan; ULJ, 
Uljin; YDA, Yong DuAm.

Table 3. FST values between populations (below the diagonal) and probability of differentiation (with P-values for FST estimates and Fisher’s exact test 
[above the diagonal]). 

NHE CJM YDA BMD SGS ULJ

NHE –＋ ＋– –＋ – ＋

CJM 0.009 – – – ＋

YDA 0.049 –0.003 – ＋– ＋

BMD 0.014 –0.030 –0.006 – ＋

SGS 0.007   0.002   0.057 0.019 ＋

ULJ 0.180   0.170   0.287 0.182 0.125 ＋

NHE, Namhae; CJM, Chuja-myeon; YDA, Yong DuAm; BMD, Bomok-dong; SGS, Seongsan; ULJ, Uljin; –, not significant for both estimates; ＋, significant for 
both estimates; –＋, not significant for FST but significant for the exact test; ＋–, significant for FST but not significant for the exact test. Significance was 
tested at the 5% level for multiple tests. The exact test was according to Raymond and Rousset (1995).

Table 4. Migration rates M (mutation-corrected migration) generated in MIGRATE from differences in mtDNA sequence data between populations. 

Receiving 
population

     M                                                                 Donor population

NHE CJM YDA BMD SGS ULJ

NHE 358.49 597.43 1500 < 0.001 < 0.001

CJM 84.16 < 0.001 1290  381.32 < 0.001

YDA < 0.001 < 0.001 3090    1710 < 0.001

BMD 90.73 < 0.001 < 0.001 < 0.001 < 0.001

SGS < 0.001 < 0.001 31.28 589.79 < 0.001

ULJ < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

NHE, Namhae; CJM, Chuja-myeon; YDA, Yong DuAm; BMD, Bomok-dong; SGS, Seongsan; ULJ, Uljin.
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that the genetic variation analysis in the mtDNA COI sequenc-
es is a useful model for researchers conducting population-
level studies of closely related species. The sea has warmed 
by 0.037°C during the last 50 years (Levitus et al., 2005). 
This warming trend should have affected populations of ma-
rine organisms in the study area. This environmental change 
may have a direct or indirect impact on recruitment, growth, 
and survival of some crustaceans (Cooley and Doney, 2009). 
Many previous studies demonstrate the importance of moni-
toring adaptive genetic change in natural populations for con-
servation (Allendorf et al., 2010). This genetic information re-
sulting from the sea current conditions surrounding P. mitella 
will be useful in developing subsequent ecological monitoring 
protocols. The present study did not thoroughly investigate the 
genetic structure of populations, including the west coast of 
the Yellow and East Seas, in Korean coastal waters. Further 
analyses of other genetic markers, such as microsatellite loci, 
and studies with larger sample sizes and more populations 
from the aforementioned areas would facilitate identification 
of gene flow patterns in P. mitella
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