• Title/Summary/Keyword: Subtractive manufacturing

Search Result 48, Processing Time 0.021 seconds

Assessment of Internal Fitness on Resin Crown Fabricated by Digital Light Processing 3D Printer

  • Kang, Wol;Kim, Min-Su;Kim, Won-Gi
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • Background: Recently, three-dimensional (3D) printing has been hailed as a disruptive technology in dentistry. Among 3D printers, a digital light processing (DLP) 3D printer has certain advantages, such as high precision and relatively low cost. Therefore, the latest trend in resin crown manufacturing is the use of DLP 3D printers. However, studies on the internal fitness of such resin crowns are insufficient. The recently introduced 3D evaluation method makes it possible to visually evaluate the error of the desired area. The purpose of this study is to evaluate the internal fitness of resin crowns fabricated a by DLP 3D printer using the 3D evaluation method. Methods: The working model was chosen as the maxillary molar implant model. A total of 20 resin crowns were manufactured by dividing these into two groups. One group was manufactured by subtractive manufacturing system (PMMA), while the other group was manufactured by additive manufacturing system, which uses a DLP 3D printer. Resin crowns data were measured using a 3D evaluation program. Internal fitness was calculated by root mean square (RMS). The RMS was calculated using the Geomagic Verify software, and the mean and standard deviation (SD) were measured. For statistical analysis, IBM SPSS Statistics for Windows ver. 22.0 (IBM Corp., USA) was used. Then, independent t-test was performed between the two groups. Results: The mean±SD of the RMS were 41.51±1.51 and 43.09±2.32 for PMMA and DLP, respectively. There was no statistically significant difference between PMMA and DLP. Conclusion: Evaluation of internal fitness of the resin crown made using a DLP 3D printer and subtractive manufacturing system showed no statistically significant differences, and clinically acceptable results were obtained.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Technology Trend of the additive Manufacturing (AM) (적층식 제조(Additive manufacturing) 기술동향)

  • Oh, Ji-Won;Na, Hyunwoong;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.494-507
    • /
    • 2017
  • A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.

Comparison of the Marginal and Internal Gap of Metal Coping according to Processing Method of Dental CAD/CAM System (치과 캐드캠 시스템의 가공 방식에 따른 금속 코핑의 적합도 비교)

  • Kim, Dong-Yeon;Jeon, Jin-Hun;Park, Jin-Young;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of this study was to evaluate the marginal and internal gap of metal coping fabricated using additive manufacturing (AM) group and subtractive manufacturing (SM) group by dental computer-aided design (CAD)/computer-aided manufacturing (CAM) systems. Twenty same cases of stone models of abutment teeth 16 by the universal numbering system were manufactured and scanned. Ten metal copings of control group were fabricated using SM and ten metal coping of experimental group were fabricated using AM. Marginal and internal gap of copings were measured using the silicone replica technique and digital microscope (${\times}140$). The data were analyzed using IBM SPSS 21.0 Statistical Software for independent samples t-test (${\alpha}=0.05$). Mean${\pm}$ standard deviation (SD) of marginal and internal gap total size of SM group was $101.00{\pm}40.33{\mu}m$ of AM group was $83.61{\pm}40.37{\mu}m$. Mean${\pm}$SD of marginal and internal gap total size of SM group was significantly greater than that of AM group (p<0.05). This study showed that AM metal copings had a better marginal and internal gap than SM metal copings.

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

Internal evaluation of provisional restorations according to the dental CAD/CAM manufacturing method : Three-dimensional superimpositional analysis (치과 CAD/CAM 가공방식에 따른 임시보철물의 내면 적합도 : 3차원 중첩 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the internal fit of two different temporary restorations fabricated by dental CAD/CAM system and to evaluate clinical effectiveness. Methods: Composite resin tooth of the maxillary first molar was prepared as occlusal reduction(2.0mm), axial reduction(1mm offset), vertical angle(6 degree) and chamfer margin for a temporary crown and duplicated epoxy die was fabricated. The epoxy dies were used to fabricate provisional restorations by CAD/CAM milling technique or 3D-printing technique. The inner data from all crowns were superimposed on the master die file in the 'best-fit alignment' method using 3D analysis software. Statistical analysis was performed using a Wilcoxon's rank sum test for differences between groups. Results: It showed that the internal RMS(Root Mean Square) values of the additive group were significantly larger than those of other group. No significant differences in internal discrepancies were observed in the temporary crowns among the 2 groups with different manufacturing method. Conclusion: All the groups had the internal fit within the clinical acceptable range (< $50{\mu}m$). The continuous research in the future to be applied clinically for the adaptation of additive manufacturing technique are needed.

Ti-6Al-4V Alloy Fabricated by Additive Manufacturing Method Using Micro-droplet Cell and Critical Pitting Temperature Techniques and Evaluation of its Resistance to Corrosion (마이크로 드로플릿 셀 기법과 임계공식온도 측정 기법을 이용한 적층가공 Ti-6Al-4V 합금의 내식성 평가)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • The resistance to corrosion of additive manufactured (3D printing) Ti-6Al-4V alloys was investigated using micro-electrochemical tests. In terms of corrosion resistance, the acicular martensitic ${\alpha}^{\prime}$ phase in such additive manufactured Ti-6Al-4V was the focus of attention, and its behavior was distinct from that of conventional subtractive manufactured Ti-6Al-4V. To order to identify ${\alpha}^{\prime}$ phase, XRD tests were performed and micro Vickers hardness was measured for different grains (bright and dark grains) in the additive manufactured Ti-6Al-4V alloy. Micro-electrochemical tests were performed to measure corrosion resistance of bright and dark grains in the additive manufactured Ti-6Al-4V alloy with specially designed electrochemical micro-droplet cell. Critical pitting temperature (CPT) measurement was performed to evaluate the resistance to pitting corrosion of additive manufactured Ti-6Al-4V alloys with different volumes of ${\alpha}^{\prime}$ phase and subtractive manufactured Ti-6Al-4V alloy. The dark grains of the laminated Ti-6Al-4V alloy distributed broader than the bright grains measured with low microhardness. The dark grains of the Ti-6Al-4V alloy, which was rich in martensite ${\alpha}^{\prime}$, had lower general corrosion and pitting resistance than bright grains. As the fraction of martensite ${\alpha}^{\prime}$ phase increased, the resistance to the pitting corrosion decreased.

A study on the machining accuracy of dental digital method focusing on dental inlay

  • Bae, Eun-Jeong;Jeong, Il-Do;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • PURPOSE. The purpose of this study was to compare the cutting method and the lamination method to investigate whether the CAD data of the proposed inlay shape are machined correctly. MATERIALS AND METHODS. The Mesial-Occlusal shape of the inlay was modeled by changing the stereolithography (STL). Each group used SLS (metal powder) or SLA (photocurable resin) in the additive method, and wax or zirconia in the subtractive method (n=10 per group, total n=40). Three-dimensional (3D) analysis program (Geomagic Control X inspection software; 3D systems) was used for the alignment and analysis. The root mean square (RMS) in the 2D plane state was measured within $50{\mu}m$ radius of eight comparison measuring points (CMP). Differences were analyzed using one-way analysis of variance and post-hoc Tukey's test were used (${\alpha}=.05$). RESULTS. There was a significant difference in RMS only in SLA and SLS of 2D section (P<.05). In CMP mean, CMP 4 ($-5.3{\pm}46.7{\mu}m$) had a value closest to 0, while CMP 6 ($20.1{\pm}42.4{\mu}m$) and CMP 1 ($-89.2{\pm}61.4{\mu}m$) had the greatest positive value and the greatest negative value, respectively. CONCLUSION. Since the errors obtained from the study do not exceed the clinically acceptable values, the lamination method and the cutting method can be used clinically.

MC3T3-E1 osteoblast adhesion to laser induced hydroxyapatite coating on Ti alloy

  • Huang, Lu;Goddard, Samuel C.;Soundarapandian, Santhanakrishnan;Cao, Yu;Dahotre, Narendra B.;He, Wei
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.81-93
    • /
    • 2014
  • An in vitro cell study evaluating cell adhesion to hydroxyapatite (HA) coated prosthetic Ti-6Al-4V alloy via laser treatment is presented in comparison with uncoated alloy. Based on our previous in vitro biocompatibility study, which demonstrated higher cell attachment and proliferation with MC3T3-E1 preosteoblast cells, the present investigation aims to reveal the effect of laser coating Ti alloy with HA on the adhesion strength of bone-forming cells against centrifugal forces. Remaining cells on different substrates after centrifugation were visualized using fluorescent staining. Semi-quantifications on the numbers of cells were conducted based on fluorescent images, which demonstrated higher numbers of cells retained on HA laser treated substrates post centrifugation. The results indicate potential increase in the normalized maximum force required to displace cells from HA coated surfaces versus uncoated control surface. The possible mechanisms that govern the enhancing effect were discussed, including surface roughness, chemistry, wettability, and protein adsorption. The improvement in cell adhesion through laser treatment with a biomimetic coating could be useful in reducing tissue damage at the prosthetic to bone junction and minimizing the loosening of prosthetics over time.

Application of Rapid prototyping for welding and milling, and Heat deformation for FEM (용접과 밀링을 이용한 쾌속조형법의 응용과 열변형 해석)

  • 류연화;최우천;송용억;박세형;조정권;신승환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.339-343
    • /
    • 2000
  • Rapid prototyping for welding and milling is a hybrid approach that makes use of welding as additive and conventional milling as subtractive technique. For two years this concept has been used to verify manufacturing mold and mechanical parts successfully. In latest new fabrication methods. For example, manufacturing mold for two sort of materials and shell fabrication, have been applied to the concept in KIST. This methods will be an alternative proposal in rapid prototyping. Metal deposition for welding causes the part to deform. It is a handicap in our proceeding. To overcome this problem, in this paper, we represent an optimal welding path for FEM analysis. Eight paths are tried to this and the value of deformation is average and standard deviation in four points'. Then we can compare with eight cases and select the optimal path.

  • PDF