• Title/Summary/Keyword: Subtractive Algorithm

Search Result 36, Processing Time 0.029 seconds

Speaker Identification with Estimating the Number of Cluster Based on Boundary Subtractive Clustering (경계 차감 클러스터링에 기반한 클러스터 개수 추정 화자식별)

  • Lee, Youn-Jeong;Choi, Min-Jung;Seo, Chang-Woo;Hahn, Hern-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.199-206
    • /
    • 2007
  • In this paper we propose a new clustering algorithm that performs clustering the feature vectors for the speaker identification. Unlike typical clustering approaches, the proposed method performs the clustering without the initial guesses of locations of the cluster centers and a priori information about the number of clusters. Cluster centers are obtained incrementally by adding one cluster center at a time through the boundary subtractive clustering algorithm. The number of clusters is obtained from investigating the mutual relationship between clusters. The experimental results for artificial datum and TIMIT DB show the effectiveness of the proposed algorithm as compared with the conventional methods.

Unsupervised Cluster Estimation using Subtractive HyperBox Algorithm (차감 HyperBox 알고리듬을 이용한 Unsupervised 클러스터 추정)

  • Moon, Seong-Hwan;Choi, Byeong-Geol;Kang, Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.87-90
    • /
    • 1997
  • Mountain Method의 다른 형태인 Subtractive 클러스터링 알고리듬은 계산이 간단하고 기존의 클러스터링 방법들과는 달리 초기 클러스터 중심의 개수 선정이 필요 없기 때문에 클러스터를 추정하는데 효과적인 알고리듬이다. 또한 클러스터의 간격을 결정하는 파라미터의 값에 따라 클러스터의 개수를 다르게 할 수 있다. 그러나 이 파라미터에 의해 동일한 그룹(Class)내에서 여러 개의 클러스터 중심이 발생될 수도 있다. 본 논문에서는 Subtractive HyperBox 알고리듬을 사용하여 이 파라미터의 영향을 줄이고 발생한 클러스터 중심이 속한 그룹의 경계를 판정함으로서 같은 그룹내에서 하나의 클러스터만 발생하도록 하고, 순차적으로 클러스터링 한 후 결과를 Subtractive 클러스터링 알고리듬과 비교하여 보았다.

  • PDF

A Generalized Subtractive Algorithm for Subset Sum Problem (부분집합 합 문제의 일반화된 감산 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • This paper presents a subset sum problem (SSP) algorithm which takes the time complexity of O(nlogn). The SSP can be classified into either super-increasing sequence or random sequence depending on the element of Set S. Additive algorithm that runs in O(nlogn) has already been proposed to and utilized for the super-increasing sequence SSP, but exhaustive Brute-Force method with time complexity of O(n2n) remains as the only viable algorithm for the random sequence SSP, which is thus considered NP-complete. The proposed subtractive algorithm basically selects a subset S comprised of values lower than target value t, then sets the subset sum less the target value as the Residual r, only to remove from S the maximum value among those lower than t. When tested on various super-increasing and random sequence SSPs, the algorithm has obtained optimal solutions running less than the cardinality of S. It can therefore be used as a general algorithm for the SSP.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Investigation of nuclear material using a compact modified uniformly redundant array gamma camera

  • Lee, Taewoong;Kwak, Sung-Woo;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.923-928
    • /
    • 2018
  • We developed a compact gamma camera based on a modified uniformly redundant array coded aperture to investigate the position of a $UO_2$ pellet emitting characteristic X-rays (98.4 keV) and ${\gamma}-rays$ (185.7 keV). Experiments using an only-mask method and an antimask subtractive method were conducted, and the maximum-likelihood expectation maximization algorithm was used for image reconstruction. The images obtained via the antimask subtractive method were compared with those obtained using the only-mask method with regard to the signal-to-noise ratio. The reconstructed images of the antimask subtractive method were superior. The reconstructed images of the characteristic X-rays and the ${\gamma}-rays$ were combined with the obtained image using the optical camera. The combined images showed the precise position of the $UO_2$ pellet. According to the self-absorption ratios of the nuclear material and the minimum number of effective events for image reconstruction, we estimated the minimum detection time depending on the amount of nuclear material.

Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image (위·변조 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘)

  • Rhee, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • In a distribution of the digital image, there is a serious problem that is distributed an illegal forgery image by pirates. For the problem solution, this paper proposes an image forensic decision algorithm using an edge energy information of forgery image. The algorithm uses SA (Streaking Artifacts) and SPAM (Subtractive Pixel Adjacency Matrix) to extract the edge energy informations of original image according to JPEG compression rate(QF=90, 70, 50 and 30) and the query image. And then it decides the forge whether or not by comparing the edge informations between the original and query image each other. According to each threshold in TCJCR (Threshold by Combination of JPEG Compression Ratios), the matching of the edge informations of original and query image is excused. Through the matching experiments, TP (True Positive) and FN (False Negative) is 87.2% and 13.8% respectively. Thus, the minimum average decision error is 0.1349. Also, it is confirmed that the performed class evaluation of the proposed algorithm is 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic) curve is 0.9388 by sensitivity and 1-specificity.

Design and Comparison of Error Correctors Using Clustering in Holographic Data Storage System

  • Kim, Sang-Hoon;Kim, Jang-Hyun;Yang, Hyun-Seok;Park, Young-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1076-1079
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating part is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

Design and Comparison of Error Reduction Methods Using Clustering in Holographic Data Storage System (홀로그래픽 정보 저장 장치에서 클러스터링을 이용한 에러 감소 기법 제안 및 비교)

  • Kim Sang-Hoon;Kim Jang-Hyun;Yang Hyun-Seok;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.83-87
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating pare is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

Efficient R Wave Detection based on Subtractive Operation Method (차감 동작 기법 기반의 효율적인 R파 검출)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.945-952
    • /
    • 2013
  • The R wave of QRS complex is the most prominent feature in ECG because of its specific shape; therefore it is taken as a reference in ECG feature extraction. But R wave detection suffers from the fact that frequency bands of the noise/other components such as P/T waves overlap with that of QRS complex. ECG signal processing must consider efficiency for hardware and software resources available in processing for miniaturization and low power. In other words, the design of algorithm that exactly detects QRS region using minimal computation by analyzing the person's physical condition and/or environment is needed. Therefore, efficient QRS detection based on SOM(Subtractive Operation Method) is presented in this paper. For this purpose, we detected R wave through the preprocessing method using morphological filter, empirical threshold, and subtractive signal. Also, we applied dynamic backward searching method for efficient detection. The performance of R wave detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41% in R wave detection.