• Title/Summary/Keyword: Subtraction image

Search Result 279, Processing Time 0.026 seconds

Effectiveness of digital subtraction radiography in detecting artificially created osteophytes and erosions in the temporomandibular joint

  • Kocasarac, Husniye Demirturk;Celenk, Peruze
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.99-107
    • /
    • 2017
  • Purpose: Erosions and osteophytes are radiographic characteristics that are found in different stages of temporomandibular joint (TMJ) osteoarthritis. This study assessed the effectiveness of digital subtraction radiography (DSR) in diagnosing simulated osteophytes and erosions in the TMJ. Materials and Methods: Five intact, dry human skulls were used to assess the effectiveness of DSR in detecting osteophytes. Four cortical bone chips of varying thicknesses (0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm) were placed at the medial, central, and lateral aspects of the condyle anterior surface. Two defects of varying depth (1.0 mm and 1.5 mm) were created on the lateral, central, and medial poles of the condyles of 2 skulls to simulate erosions. Panoramic images of the condyles were acquired before and after artificially creating the changes. Digital subtraction was performed with Emago dental image archiving software. Five observers familiar with the interpretation of TMJ radiographs evaluated the images. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic accuracy of the imaging methods. Results: The area under the ROC curve (Az) value for the overall diagnostic accuracy of DSR in detecting osteophytic changes was 0.931. The Az value for the overall diagnostic accuracy of panoramic imaging was 0.695. The accuracy of DSR in detecting erosive changes was 0.854 and 0.696 for panoramic imaging. DSR was remarkably more accurate than panoramic imaging in detecting simulated osteophytic and erosive changes. Conclusion: The accuracy of panoramic imaging in detecting degenerative changes was significantly lower than the accuracy of DSR (P<.05). DSR improved the accuracy of detection using panoramic images.

Assessing changes of peri-implant bone using digital subtraction radiography

  • Kwon Ji-Yung;Kim Yung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.273-281
    • /
    • 2001
  • Digital subtraction radiography may be one of the most precise and noninvasive methods for assessing subtle density changes in peri-implant bone, providing additional diagnostic information on implant tissue integration in overall maintenance. The aims of this study were to evaluate density changes after first, second surgery of dental implant and to measure the amount of marginal bone loss 9 months after second surgery using digital subtraction radiography. Bone change around 30 screw-shaped implants in 16 patients were assessed on radiographs. 17 Branemark implants of 3.75mm in diameter(Nobel Biocare, Goteborg, Sweden), 2 Branemark implants of 5.0mm in diameter, 11 $Replace^{TM}$ implants of 4.3mm in diameter(Nobel Biocare, Goteborg, Sweden) were used. To standardize the projection geometry of serial radiographs of implants, customized bite block was fabricated using XCP film holder(Rinn Corporation, Elgin, IL.) with polyether impression material of Impregum(ESPE, Germany) and direct digital image was obtained. Qualitative and quantitative changes on radiographs were measured with Emago software(The Oral Diagnostic System, Amsterdam, Netherlands). The results were as follows: 1. The peri-implant bone density of 69.2% implants did not change and the peri-implant bone density of 30.8% implants decreased after 3 months following first surgery. 2. The crestal bone density of 53.9% implants decreased first 3 months after second surgery. The crestal bone density of 58.8% implants increased 9 months after second surgery. No density change was observed around the midportion of the implants after second surgery, 3. The amount of marginal bone loss between different kinds of implants showed no statistically significant differences (p>0.05). 4. More than 90% of total marginal bone loss recorded in a 9-month period occurred during the first 3 months.

  • PDF

Dose Reduction According to Geometric Parameters of Digital Cerebral Angiography (두개부 혈관 조영검사 시 기하학적 특성에 따른 선량 감소 방안)

  • Park, Chan Woo;Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.399-406
    • /
    • 2019
  • This study aims to find geometric parameters that the radiologist can change from time to time to reduce dose in angiography examinations. Depending on the geometric characteristics, the values calculated by effective dose were compared, while filming in fluoroscopy mode and Digital subtraction angiography, respectively. The study found that the lower the dose was in FPS mode, the lower the dose was reduced to 30-40%. Doses according to the X-ray angle were measured highest in AP View and lower as the angle went in the head direction. The greater the FOV, the higher the dose was 1.2-1.6 times, and the closer the distance between the X-ray tube and the table, the greater the dose was about 10%. Source-image intensifier distance (SID) get longer to 100 mm, dose of each fluoroscopy and Digital subtraction angiography increase up to 25-30%. In conclusion, various geometric characteristics in angiography examinations are parameters that can be applied by radiographers as frequently as possible, and appropriate geometric properties can be considered and applied in various situations, resulting in appropriate dose reduction.

Real time detection and recognition of traffic lights using component subtraction and detection masks (성분차 색분할과 검출마스크를 통한 실시간 교통신호등 검출과 인식)

  • Jeong Jun-Ik;Rho Do-Whan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.65-72
    • /
    • 2006
  • The traffic lights detection and recognition system is an essential module of the driver warning and assistance system. A method which is a color vision-based real time detection and recognition of traffic lights is presented in this paper This method has four main modules : traffic signals lights detection module, traffic lights boundary candidate determination module, boundary detection module and recognition module. In traffic signals lights detection module and boundary detection module, the color thresholding and the subtraction value of saturation and intensity in HSI color space and detection probability mask for lights detection are used to segment the image. In traffic lights boundary candidate determination module, the detection mask of traffic lights boundary is proposed. For the recognition module, the AND operator is applied to the results of two detection modules. The input data for this method is the color image sequence taken from a moving vehicle by a color video camera. The recorded image data was transformed by zooming function of the camera. And traffic lights detection and recognition experimental results was presented in this zoomed image sequence.

A QUANTITATIVE STUDY OF BONE DENSITY ON RADIOGRAM BY USING IMAGE ANALYZER (영상 분석장치를 이용한 골 흑화도의 정량적 평가에 관한 연구)

  • Choi Won-Jae;Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.521-533
    • /
    • 1995
  • This study was performed to develop and evaluate the method to detect Quantitatively the serial changes in the size of artificial lesion in the spongious bone by automatic color image analyzer. 15 intraoral radiograms taken before and after endodontic treatment of 5 cases were used for contour line analysis. 30 intraoral radiograms taken by geometrically standardized apparatus before and after serially the formation of artificial lesions of 0.80, 1.20, 1.75, 2.00mm in diameter at the periapical area and interdental area of spongious bone were used. The analysis of image according to the variance of lesion size by 0.25, 0.35, 0.55, and 0.85mm serially was performed by the histogram and the color enhancement with subtraction. The images inputted by CCDcamera were digitized and analyzed by NEXUS QUBE program with NEC PC-9801 computer. The obtained results were as follows: 1. There was no reliability in the analysis of lesions by contour line 2 .. The mean difference of the grey scale at each pixel was 1 step between reference image and the corrected images. 3. In the analysis by histogram of the artificial lesion in spongeous bone, the change over 0.55mm in the mesiodistal size was detectable by the change of the numbers of pixel showing the change in grey scale. 4. In the analysis by histogram of the artificial lesion in spongeous bone, the change over 0.25mm in the buccolingual size was detectable by the change in grey scale. 5. By color enbancement with- subtraction, each lesion was able to be isolated and the change in it's mesiodistal size was detectable visually , but not in it's buccolingual size.

  • PDF

Color Intensity Variation based Approach for Background Subtraction and Shadow Detection

  • Erdenebatkhaan, Turbat;Kim, Hyoung-Nyoun;Lee, Joong-Ho;Kim, Sung-Joon;Park, Ji-Hyung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.298-301
    • /
    • 2007
  • Computational speed plays key role in background subtraction and shadow detection, because those are only preprocessing steps of a moving object segmentation, tracking and activity recognition. A color intensity variation based approach fastly detect a moving object and extract shadow in a image sequences. The moving object is subtracted from background using meanmax, meanmin thresholds and shadow is detected by decrease limit and correspondence thresholds. The proposed approach relies on the ability to represent shadow cast impact by offline experiment dataset on sub grouped RGB color space.

  • PDF

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

Background Subtraction for Moving Cameras based on trajectory-controlled segmentation and Label Inference

  • Yin, Xiaoqing;Wang, Bin;Li, Weili;Liu, Yu;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4092-4107
    • /
    • 2015
  • We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.

Studies of LSB Features with K-DRIFT: Galactic Cirrus Clouds and Extragalactic Objects

  • Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.56.4-57
    • /
    • 2021
  • The low surface brightness (LSB) universe has been largely unexplored. The LSB structures are extremely difficult to image due to systematic errors of sky subtraction and scattered light in he atmosphere and in the telescope. Among the systematic errors of sky subtraction, the widespread presence of Galactic cirrus clouds is one of the major obstacles in studying the LSB features of extragalactic sources. Interstellar dust clouds are also fundamental to understand many issues in the Milky Way. Therefore, understanding the Galactic cirri is a crucial topic in the LSB studies. We present the ubiquitousness and current understanding of the Galactic cirri. We also discuss what is necessary to study the LSB features with K-DRIFT and what we can learn from the K-DRIFT observations.

  • PDF

Hand motion estimation for interactive image composition (상호작용 영상합성을 위한 손의 움직임 추정)

  • Koo, Ddeo-Ol-Ra;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.951-952
    • /
    • 2008
  • This paper proposes a new method for image composition which estimates the rotation angle of human hand and uses the reserved image in real-time camera images. First, we capture a background image and extract a interesting region by background subtraction. Next, we estimate the skin region from the interesting region and calculate the rotation angle of estimated skin region using PCA(Principal Components Analysis). Finally, we composite the reserved image for the calculated rotation angle in camera images. The proposed method can be applied to control the 3D avatar for marker-less augmented reality.

  • PDF