• 제목/요약/키워드: Subsurface flow wetland system

검색결과 20건 처리시간 0.024초

고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거 (Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제6권6호
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.

고수부지를 이용한 여과습지의 수질정화 초기처리 (Treatment Efficiency of a Subsurface-Flow Wetland System Constructed on Floodplain)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제4권4호
    • /
    • pp.56-63
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a subsurface-flow constructed wetland system (23 m in length, 6.5 m in width, 0.65 m in depth) over one year after its establishment on floodplain of a stream in June 2000. An upper layer of 10 cm in depth was filled with course sand and the main biological layer of 50 cm depth with crushed stone with 8 - 15 mm in diameter. The system was planted with common reeds (Phragmites australis) grown on pots. Effluent discharged from a secondary-level treatment plant was funneled into it. Reed stems emerging in April 2001 grew up to 145.9cm until July 2001. The number of reed stems in July 2001 increased by about 11 times compared with that just after planting. The system was inundated seven times by storms over the monitoring period. Reeds were slightly bent after flooding, however they returned to almost upright standing in a couple of weeks. Small portion of inside slope of berm was eroded and the system surface had a sedimentation of 2 - 3 mm in depth. The average removal rates for SS, $BOD_5$, T-N and T-P was 73%, 70%, 53%, and 72%, respectively. The purification efficiencies for SS and $BOD_5$ were fairly good. The reduction rates for T-N was relatively low for the period of late fall through winter until early spring due to lower water temperature which retarded microbial nitrification and denitrification mechanisms. Reduction in the concentration of T-P during fall and winter was relatively higher than that during spring. Leach of phosphorous from plant litters lying on system surface and slight resuspension of precipitated phosphorous in substrates resulted in lower reduction for T-P in spring.

  • PDF

Sewage Treatment Using Natural Systems and Effluent Reuse for Crop Irrigation in Small Communities

  • Ham, Jong-Hwa;Yoon, Chun-G.;Jeon, Ji-Hong;Hwang, Ha-Sun
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.70-82
    • /
    • 2003
  • A pilot study was performed from July 1998 to December 2002, including winter performance, to examine seasonal performance of a constructed wetland and subsequent pond system for treatment of sewage in small communities of Korea. Pond was operated as a intermittent-discharge pond during winter period, and continuous flow system during growing season; its effects was evaluated from December 2001 to April 2003. The subsurface flow (SSF) wetland was satisfactory for treating sewage with good removal efficiency even during the winter period. The wetland effluent concentrations of $BOD_5$ and TSS were often higher in winter than in the growing season, but this was explained by the higher loading rates, rather than lower removal efficiency. The relatively poor-quality wetland effluent was further polished during winter in the pond. The upper layer of the pond water column became remarkably clear immediately after ice melt. In the growing season, ponds could be operated as a continuous flow system to remove nutrients and pathogens, and the effluent of pond could be reused as a supplemental irrigation water without risk of infection by sewage-borne pathogens as well as causing adverse effect on growth and yield. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the intermittent-discharge pond was found to be effective for further polishing if necessary. Therefore, the combination of a wetland and subsequent pond system and reuse of effluent as crop irrigation water is recommended as a practical alternative to treat sewage in Korean small communities, and partial discharge of pond water in March is suggested.

오염하천의 정화를 위한 파일럿 규모의 인공습지 적용 (Performance Study on Pilot-scale Constructed Wetlands in order to Restore Contaminated Stream)

  • 김승준;최용수;배우근
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.546-556
    • /
    • 2006
  • The purpose of this study is to improve the polluted stream water quality by pilot-scale five different constructed wetlands (CWs). Cell 1 to 3 are newly designed 2SFCW (Surface-subsurface flow CW) with 1 to 3 flow shifters (FS) in the middle of the wetland system. Cell 4 and 5 are control CW (CCW), but Cell 5 is the same type as Cell 3. The FS, which converts the route of surface and subsurface flow between two wetlands connected in series, was able to enhance the treatability of TN via nitrification and denitrification and of SS due to filtration and sedimentation. The void fraction and dispersion number of Cell 1, 2 and 3 obtained from the RTD analysis were found to be 0.73 and 0.17, respectively. COD and TP removal efficiencies of Cell 1 to 3 were similar to that of Cell 4 and 5. SS removal efficiencies of Cell 1 to 3 and 5 with FS were 5-10% higher than that of Cell 4 without FS. TN removal efficiencies of Cell 1 to 3 were 3-14% higher than that of Cell 4 and 5. The average $R^2$ values of COD, SS, TN and TP obtained from nonlinear regression analysis were similar to the results of other researchers.

하천수정화 여과습지에서 성장하는 갈대의 영양염류 흡수량 (Nutrient Uptake by Reeds Growing in Subsurface-flow Wetland Constructed to Purify Stream Water)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제9권1호
    • /
    • pp.89-99
    • /
    • 2006
  • The growth and biomass of reeds(Phragmites australis) growing in a subsurface treatment wetland system were investigated from April 2003 to October 2003. Nitrogen(N) and phosphorous(P) concentrations in above-ground(AG) and below-ground(BG) tissues of reeds were examined and the removal rate of N and P by reeds were analyzed. The system, 29 m in length, 9 m in width and 0.65 m in depth, was constructed in June 2001 on a floodplain in the down reach of the Kwangju Stream in Korea in order to purify polluted water of the stream. A bottom layer of 45 cm in depth was filled with crushed granites(15~30 mm in diameter) and a middle layer of 10 cm in depth was filled with pea pebbles(10 mm in diameter). An upper layer of 5 cm contained course sand. Reeds were transplanted on the surface of the system, which were dug out of natural wetlands, and their shoots were trimmed 40 cm in height. The height and density of the shoots averaged 237.7 cm and 244.0 shoot/$m^2$, respectively, when the reeds grew fully. The maximum biomass of AG and BG tissues were 1,964 and 1,577 g/$m^2$, respectively, and the AG : BG ratio of biomass was 1.26. Mean AG and BG dry weights were recorded as 1,355 and 748 g/$m^2$, respectively. The AG and BG tissue concentrations of N averaged 12.37 and 10.01 mg/g, respectively, and those of P 2.37 and 2.03 mg/g, respectively. Inflow to the system averaged 40 $m^3$/day. The concentrations of total nitrogen(T-N) in influent and effluent were 8.4 mg/L and 3.2 mg/L, respectively, and those of total phosphorous(T-P) were 0.73 and 0.38 mg/L, respectively. The total removal of T-N and T-P by the system during the investigation period averaged 140.2 and 9.7 g/$m^2$, respectively, and the total uptake of N and P by the reeds were calculated as 24.39 and 4.73 g/$m^2$, respectively. Average removals of about 17% of N and about 49% of P by reeds were recorded. The N and P concentrations in AG tissues were significantly different among the three zones of the system:near to inflow(St1), in the middle of system(St2), and near to outflow(St3). The N and P concentrations in BG tissues were also significantly different among St1, St2 and St3. N and P concentrations in AG and BG tissues of reeds growing in St1 were higher than those in St2 and St3. The height and density of shoots of reeds in St1 were larger than those in St2 and St3. Significant amounts of N and P in the influent were taken up by reeds in St1.

생활오수 처리를 위한 인공습지의 처리수 수질 추정식에 관한 연구 (Study on the Estimation Equation of Effluent Concentration from Constructed Wetland for Domestic Wastewater Treatment)

  • 윤춘경;권순국;전지흥
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.491-499
    • /
    • 2000
  • Effluent concentration estimation equations for treatment wetland were reviewed with 3 -year experimental data. Four equations from USEPA, WPCF, Kadlec and Knight, and this study were applied to the over 100 data points of 1996 to 1999 study at the pilot plant in Konkuk University. The system was a subsurface flow type and consisted of 60cm depth of sand and reeds, and it worked continuously including winter with domestic sewage from school building. Generally, all the equations demonstrated reasonable agreement with experimental data and they could be used for design process if selected carefully. Among them, the equation from this study showed the best fit for the data. The reason might be not only the equation was derived from the experimental data, but also it included plant coverage parameter in the equation while others did not Plant coverage was proved to be an important parameter in the prediction of the treatment wetland system, and its inclusion in the estimation equation could improve the accuracy. Although existing equations could be used in the wetland design, pilot plant experiment for the anticipated condition and subsequent equation development can provide more reliable equation. It takes time to obtain meaningful data from wetland system. Therefore, timely onset of well organized study is recommended before large scale application of treatment wetland system to either point or nonpoint source pollution abatement.

  • PDF

Feasibility Study of Agronomic Application of Treated Sewage for Paddy Rice Culture

  • Woo, Sun-Ho;Yoon, Chun-Gyeong
    • 한국환경농학회지
    • /
    • 제19권5호
    • /
    • pp.433-441
    • /
    • 2000
  • A feasibility study was performed to examine the agronomic application of treated sewage on paddy rice culture by field experiment for two consecutive years. The domestic sewage was treated by the constructed wetland system which was in subsurface flow type and consisted of sand and macrophyte. The effluent of the wetland system was used for irrigation water. The effluent was diluted to maintain the total nitrogen concentration below $26mg{\cdot}L^{-1}$ in the first year and used without dilution in the second year experiment. Growth components and yields were compared against the CONTROL plot where conventional method was applied. And also, soil characteristics of the plots before and after reclaimed sewage irrigation were analyzed. Generally, addition of the treated sewage to the irrigation water showed no adverse effects on paddy rice culture, and even enhancement was noticed in both growth and yield. Irrigation of treated sewage after concentration adjusted with conventional fertilization showed the better result, and the yield exceeded that of CONTROL case where clean water was irrigated. Soil characteristics changed after irrigation, and significant EC increasing was observed for the reclaimed sewage irrigation plots. From this study, it appears that reuse of treated sewage, as supplemental irrigation water could be a feasible and practical alternative. For full-scale application, further study is recommended on the specific guideline of major water quality components in treated sewage for irrigation and public health.

  • PDF

6년 동안 운영한 인공습지의 처리효율 분석 (Analysis of Efficiency of Artificial Wetland for Waste Water Treatment Past Six Year Operation)

  • 허재규;남종현;김용전;김인선;최경숙;최승익;안태석
    • 한국환경복원기술학회지
    • /
    • 제10권3호
    • /
    • pp.1-7
    • /
    • 2007
  • For waste water treatment, artificial wetland was constructed in 1998. The size of artificial wetland is 20m${\times}$200m, with sand and gravel as media and Phragmites japonica was implanted. The removal rate of BOD, TN, and TP were 86%, 33% and 25% from June 2004 to November 2005 respectively, while those were 88%, 38% and 55% in 1999. Organic materials and nitrogen compounds are still effectively removed, after 6 years of construction, but the removal efficiency of phosphorus compounds is reduced. So for sustaining of artificial wetland as waste water treatment system, the removal efficiency of phosphorus compounds must be elevated.

간헐식 흐름방식을 활용한 수직·수평 습지의 정화효율 평가 (Evaluation of the Reducing Efficiency of Vertical and Horizontal Wetland Using Intermittent Flow System)

  • 주광진;이동민;김기중;조용철;장광현;최이송;오종민
    • Ecology and Resilient Infrastructure
    • /
    • 제4권3호
    • /
    • pp.142-148
    • /
    • 2017
  • 본 연구에서는 부영양화의 원인이 되는 질소와 인의 제거 효율을 향상시킬 목적으로 광물질을 활용한 여재를 이용하여 호기, 혐기의 흐름조건을 만들어주기 위한 수직 수평 흐름 인공습지를 고안하여 아크릴 반응조로 제작한 후 성능평가를 진행하였다. 수직 수평 흐름형 인공습지의 경우 호기 및 혐기조건을 평가하기 위해서 반응조 내 용존산소(DO) 농도를 측정해본 결과 호기상태에서는 2.7 mg/L, 혐기상태에서는 N.D로 확인되어 목적에 부합된 결과가 확인되었다. 실험결과에서는 SS 저감효과가 140 min, 80 min, 60 min의 운전시간에서 각각 94%, 91%, 61%의 효율을 보였고, T-P의 경우 각각의 운전시간에 따라 84%, 71%, 63%의 저감효율을 보였다. 또한 T-N의 경우 각각의 운전시간에 따라 63%, 49%, 42%의 저감효율을 보여 기존의 습지가 12~24 hr 체류시간을 가지는 것에 비하여 짧은 운전시간에도 높은 처리효율을 보이는 것으로 확인되었다. 본 연구에서는 수직 수평 흐름 방식을 복합 적용하여 기존 인공습지의 단점을 보완하기 위해 기술개발을 진행한 것으로 어떠한 기능적 효과를 갖는지 확인하였고, 향후 이에 대한 현장적용을 위한 운영 및 관리적 차원의 메커니즘 연구가 추가로 진행 될 필요가 있다.