• Title/Summary/Keyword: Subsurface flow wetland system

Search Result 20, Processing Time 0.022 seconds

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Treatment of Acid Mine Drainage Using Immobilized Beads Carrying Sulfate Reducing Bacteria (황산염환원균 고정화 담체를 이용한 산성광산배수 처리)

  • Kim, Gyoung-Man;Hur, Won;Baek, Hwan-Jo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • The application of constructed subsurface-flow wetlands for treatment of wastewater from abandoned mines is being increased. Crushed limestone, oak chips, and mushroom composites are often employed in a bulk form, as the substrates in the bed media. Efficiency of the subsurface-flow treatment system drops with time as the hydraulic conductivity of the wetland soil decreases significantly, presumably due to chemical reactions with the wastewater. The purpose of this study is to investigate the applicability of immobilized beads carrying sulfate reducing bacteria for acid mine drainage treatment system. The ingredients of immobilized beads are organic materials such as mushroom composite and oak chips, limestone powder for a pH buffer, mixed with a modified Coleville Synthetic Brine. It was found that immobilized beads are more efficient than the bulk form for pH recovery, sulfate and heavy metal removal.

Application of Subsurface Flow Wetland using the Phragmites australis for Water Quality Improvement of the Agricultural Reservoi (농업용 저수지 수질개선을 위한 지하흐름 갈대 인공습지의 적용)

  • Nam, Gui Sook;Pae, Yo Sop;Kim, Hyung Joong;Lee, Sang Joon;Lee, Gwang Sik
    • Journal of Wetlands Research
    • /
    • v.6 no.4
    • /
    • pp.59-69
    • /
    • 2004
  • Constructed wetlands are regarded as an important water treatment system for agricultural water quality improvement and management. The purpose of this study is to evaluate the application of subsurface flow wetland(SFW), using the Pharagmites australis as macrophytes, and to clarify the basic and essential factors to be considered in the construction and management of constructed wetlands. This study was carried out relatively short hydraulic residence time(HRT), 6hr ~ 72hr (3days), using eutrophic reservoir water with relatively low concentrations of influent and large quantity to be treated. The effluent satisfied the criteria of agricultural water quality. Removal efficiencies of Biochemical oxygen demand(BOD), Chemical oxygen demand(COD), Suspended solids(SS) and Chlorophyll a(Chl-a) were high in HRT 24hr, not any more significant increasement of removal efficiencies in HRT 48hr and 72hr. However, removal efficiencies of nitrogen and phosphorus increased as HRT increased, showing the highest efficiency at the 72hr of HRT in nitrogen, and 48hr in phosphorous. The SFW was very effective system for reservoir water quality improvement, and had the advantages of the reduction of purchasing cost to land required, lack of odors, and harmful insects, especially mosquito, the improvement of the scenic beauty and minimal risk of public exposure. Therefore, it was evaluated that the SFW was very available water treatment system for the water quality improvement of agricultural reservoir. However, it was need to consider with application of the SFW in high cost of construction and troublesome of management.

  • PDF

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Development of small constructed wetland for urban and roadside areas (도시 및 도로 조경공간을 활용한 소규모 인공습지 조성 기술)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Cho, Hye-Jin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.231-242
    • /
    • 2011
  • Recently, the green spaces in the urban areas were greatly reduced due to urbanization and industrialization. As urban structures such as roads and buildings are built, the amount of impervious area within a watershed increases. High impervious surfaces are the common causes of high runoff volumes as the soil infiltration capacity decreases and the volume and rate of runoff increase thereby decreasing the groundwater recharge. These effects are causing many environmental problems, such as floods and droughts, climate change, heat island phenomenon, drying streams, etc. Most cities attempted to reduce sewer overflows by separating combined sewers, expanding treatment capacity or storage within the sewer system, or by replacing broken or decaying pipes. However, these practices can be enormously expensive than combined sewer overflows. Therefore, in order to improve these practices, alternative methods should be undertaken. A new approach termed as "Low Impact Development (LID)" technology is currently applied in developed countries around the world. The purpose of this study was to effectively manage runoff by adopting the LID techniques. Small Constructed Wetland(Horizontal Subsurface Flow, HSSF) Pilot-scale reactors were made in which monitoring and experiments were performed to investigate the efficiency of the system in removing pollutants from runoff. Based on the results of the Pilot-plant experiments, TSS, $COD_{Cr}$, TN, TP, Total Pb removal efficiency were 95, 82, 35, 91 and 57%, respectively. Most of the pollutants were reduced after passing the settling tank and the vertical filter media. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Test-bed evaluation of developed small constructed wetland for using in urban areas (도시지역에 적용하기 위한 소규모 인공습지 Test-bed 시설 평가)

  • Kang, Chang-Guk;Lee, So-Young;Cho, Hye-Jin;Lee, Yuw-Ha;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.455-463
    • /
    • 2011
  • Conventional construction technologies have been continually applied without consideration of its impact to the environment. This resulted to various problems including the negative responses of local citizens that regarded some constructed facilities as aversive facilities causing environmental and hydraulic problems in the urban area, etc. To prevent these problems, therefore, alternative methods should be undertaken. A new approach termed "Low Impact Development (LID)" technology is currently adapted in developed countries around the world. This study aims to investigate the efficiency of the developed small constructed wetland (SCW) with horizontal subsurface flow as a LID technique applicable in urban areas. Two test-bed facilities were constructed and monitoring had been conducted between July 2010 and June 2011. Based on the findings, the removal efficiencies achieved for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb for the SCW-1 were 66, 53, 46, 55, 67 and 50%, respectively. On the other hand, the SCW-2 attained 82, 62, 51, 48, 74 and 42% efficiency for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb, respectively. The results indicated that the removal of particulate matter and heavy metals which are considered as main pollutants from stormwater runoff in urban areas was satisfactory in the system. Therefore, the test-beds proved to be appropriate for the treatment of pollutants in urban landuses such as road, parking lot, etc. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Analysis of the Factors Affecting Nutrients Removal in Hybrid Constructed Wetland Treating Stormwater Runoff (강우 유출수 처리를 위한 하이브리드 인공습지의 영양물질 저감 인자 분석)

  • Gurung, Sher Bahadur;Geronimo, Franz Kevin F.;Choi, Hyeseon;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Nutrients generated from various land uses lead to eutrophication during the influx of water, and it is necessary to apply the LID techniques to reduce nutrients from nonpoint sources in order to mitigate the occurrence of the algal bloom. This study was carried out to derive the design factors of hybrid artificial wetland (HCW) to increase the removal efficiency of nutrients. HCW system was constructed in the year 2010 for the treatment of rainfall runoffs from parking lots and roads composed of 100% impervious floors in the Cheonan campus of Kongju University. The average nutrients removal efficiency of TN and TP was 74% and 72%, respectively. Both TN and TP removal efficiencies were higher than those of free surface wetlands and subsurface flow wetlands due to activated physical and ecological mechanisms. The critical design parameters for the efficient nutrients removal in the artificial wetlands were the ratio of the surface area to the catchment area (SA/CA), land use, the rainfall runoff, and the rainfall intensity. The optimal carbon to nitrogen (C/N) ratio was estimated at 5: 1 to 10.3: 1. The results of this study can be applied to the efficient design of hybrid artificial wetlands to treat nutrients in urban runoff with high efficiency.

Change of Nutrients and Behaviour of Total Coliforms in the Natural Treatment of Wastewater by Subsurface Flow Wetland System (인공습지를 이용한 자연정화 오수처리시설에서 영양물질의 변화와 대장균군의 행동)

  • Yoon, Chun-Gyeong;Kwun, Soon-Kuk;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.249-254
    • /
    • 1997
  • The constructed wetland system which is applicable to rural wastewater treatment was examined by pilot plant experiment. Removal rates of nutrients including nitrogen and phosphorus and total coliform were evaluated. The $NH_4\;^+$ concentration of the influent was in the range of 91.57 to 275.88mg/l and the effluent concentration was about 40% lower than the influent. The decreasing of the $NH_4\;^+$ concentration might be due to volatilization, plant uptake, adsorption onto soil particles, and mainly nitrification. However, generally concentrations of $NO_2\;^-$ and $NO_3\;^-$ were increased in the effluents compared to the influent concentrations, which implies that nitrogen components in the system were nitrified. Overall, the average removal rate of the nitrogen was about 5% which seems inadequate as a wastewater treatment system, and this system needs improvement on nitrogen removal mechamism. The removal rate of the phosphorus was quite high and effluent concentration was very low. Reason for high removal rate of the phosphorus might be mainly strong adsorption characteristic onto soil particles. The average removal rate of the total coliforms was about 83%, and main removal mechanisms are thought to be adsorption onto soil and inability to compete against the established soil microflora. From the results of the study, the constructed wetland system needs to be improved in nitrogen removal mechanism for field application.

  • PDF

Natural Treatment of Wastewater from Industrial Complex in Rural Area by Subsurface Flow Wetland System (인공습지에 의한 농공단지 폐수처리)

  • Yoon, Chun-Gyeong;Lim, Yoong-Ho;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.170-174
    • /
    • 1997
  • Constructed wetland system was studied to treat wastewater from industrial complex in rural area. Pilot plant at the Baeksuk Nongkong Danzi in Chunahn-City was used for field study. For the DO, the effluent concentration was higher than the influent concentration and it implies that natural reaeration supplies enough oxygen to the system. For the SS, the effluent concentration was consistently lower than the water quality standard even though the influent concentration varied significantly, which showed that SS was removed by the system effectively which is consist of soil and plants. For the BOD and COD, the average removal rate of them were 56% and 43%, respectively, therefore, the effluent concentration could not meet water quality standards when influent concentration was high. The removal rate of BOD and COD can be improved by supplemental treatment in addition to this system if necessary. For the T-N and T-P, the influent concentration of them were lower than the water quality standards than no further treatment was needed. Overall, the result showed that constructed wetland system is a feasible alternative for the treatment of wastewater from industrial complex in rural area. For actual application of this system, further study on design factors including loading rate, removal mechanism, and temperature effects is required to meet water quality standard consistently. Compared to existing systems, this system is quite competitive because it requires low capital cost, almost no energy and maintenance, and therefore, very cost effective.

  • PDF

The Effect of Reclaimed Sewage Irrigation on the Rice Cultivation (벼 재배시 생활오수 처리수 관개 효과)

  • Yoon, Chun-Gyeong;Kwun, Soon-Kuk;Chung, Ill-Min;Kwon, Tae-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.236-244
    • /
    • 1999
  • A feasibility study was performed to examine the agronomic application of treated sewage on paddy rice culture by field experiment. The domestic sewage was treated by the constructed wetland system which was in subsurface flow type and consisted of sand and macrophyte. The effluent of the wetland system was adjusted to maintain the total nitrogen concentration below $25mgL^{-1}$ and used for irrigation water. Four treatments include (1) irrigation of treated sewage after concentration adjusted with conventional fertilization (TWCF), (2) irrigation of treated sewage after concentration adjusted with half of the conventional fertilization (TWHF), (3) irrigation of treated sewage after concentration adjusted without fertilization (TWNF), and (4) irrigation of treated sewage as it was without fertilization (SWNF). These cases were compared to the control case of tap water irrigation with conventional fertilization (Control). Generally, addition of the treated sewage to the irrigation water showed no adverse affect on paddy rice culture, and even improvement was noticed in both growth and yields. TWCF showed the best result and the yields exceed the Control in about 10%. Overall performance of the treatments was TWCF, Control, TWHF, TWNF, and SWNF in decreasing order. From this study, it appears that reuse of treated sewage as a supplemental irrigation water could be feasible and practical alternative for ultimate sewage disposal which often causes water quality problem to the receiving water body. For full scale application, further study is recommended on the specific guidelines of major water quality components and public health.

  • PDF