• Title/Summary/Keyword: Subsurface Defect

Search Result 25, Processing Time 0.037 seconds

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Thermal Imaging for Detection of SM45C Subsurface Defects Using Active Infrared Thermography Techniques (능동 적외선 열화상 기법에 의한 SM45C 이면결함 검출 열영상에 관한 연구)

  • Chung, Yoonjae;Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Active thermography techniques have the capability of inspecting a broad range simultaneously. By evaluating the phase difference between the defected area and the healthy area, the technique indicates the qualitative location and size of the defect. Previously, the development of the defect detection method used a variety of materials and the test specimen was done. In this study, the proposed technique of lock-in is verified with artificial specimens that have different size and depth of subsurface defects. Finally, the defect detection capability was evaluated using comparisons of the phase image and the amplitude image according to the size and depth of defects.

Symmetry and depth-dependent orders of subsurface defects in Mn-doped Sb(111) studied by using STM

  • Cho, Doo-Hee;Kim, Min-Seong;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.57-57
    • /
    • 2010
  • Sb(111) is a spin textured surface due to the strong spin-orbit coupling, often viewed as a proto-type topological insulator. We used scanning tunneling microscopy (STM) to characterize various Mn-induced subsurface defects existing at the surface of Mn-doped Sb at 50 K. Our STM images show that every defect exhibits 3-fold symmetry with a single rotational orientation and can be categorized by their shapes and sizes. We found more than 10 types of subsurface defects with distinctive orders, which allows the resolution of the vertical positions of the magnetic dopants lying more than 10 layers down from the surface. We will discuss about our findings in comparison with theoretical results.

  • PDF

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

Defect Sizing and Location by Lock-in Photo-Infrared Thermography (위상잠금 광-적외선 열화상 기술을 이용한 내분결함의 위치 및 크기 평가)

  • Choi, Man-Yong;Kang, Ki-Soo;Park, Jeong-Hak;Kim, Won-Tae;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.321-327
    • /
    • 2007
  • In lock-in thermography, a phase difference between the defect area and the healthy area indicates the qualitative location and size of the defect. To accurately estimate these parameters, the shearing-phase technique has been employed which gives the shearing-phase distribution. The shearing-phase distribution has maximum, minimum, and zero points that help determine quantitatively the size and location of the subsurface defect. In experiment, the proposed technique is verified with artificial specimen and these related factors are analyzed.

Rolling Contact Fatigue Analysis According to Defect Size on Rail (레일의 표면결함크기에 따른 구름접촉수명평가)

  • Seo, Jung-Won;Kwon, Seong-Tae;Lee, Dong-Heong;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.637-642
    • /
    • 2011
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

  • PDF

Shearing Phase Lock-in Infrared Thermography for Defects Evaluation of Metallic Materials Specimen (금속재료 시편의 결함평가에 대한 전단위상 Lock-in 적외선열화상 연구)

  • Park, Jeong-Hak;Choi, Man-Yong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • This paper proposes method to evaluate the location and size of the internal defects of metallic specimens by the shearing phase lock-in infrared thermography. Until now, infrared thermography test for metal specimen of STS304 and Cu-Zn were conducted to find the best test conditions. However, In unspecified situation of the form and existence of defects, there was a disadvantage to takes a long time for finding the optimal experimental conditions. The defect detection and evaluation was performed at 60 MHz signal using lock-in and shearing-phase method under limited heating conditions. By shearing-phase distribution method, Defects for the maximum, minimum and zero points were quantitatively detected at the size and location of the subsurface. As results, application of the proposed technique was verified for STS304 and Cu7-Zn3 with artificial defect and factors affected defect evaluation were searched and analyzed.