• Title/Summary/Keyword: Substrate system

Search Result 2,290, Processing Time 0.028 seconds

A calculation on the Metal-Film Mixing by Intense Pulse Ion Beam (IPIB)

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Wang, Y.G.;Xue, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.74-78
    • /
    • 2003
  • In this paper, we studied, by numerical calculation, a system, which was composed of metal-film and metal-substrate irradiated by IPIB with beam ion energy 250 keV, current density 10 to 250 A/$\textrm{cm}^2$. While the IPIB irradiation was going on, an induced effect named mixing occurred. In this case, metal-film and part of metal-substrate melted and mixed. The mixing state was kept as it was in melting phase due to the fast cooling rate. Our works were simulating the heating and cooling process via our STEIPIB program and tried to find proper parameters for a specific film-substrate system, 500 nmtitanium film coated on aluminum, to get best mixing results. The parameters calculated for such Ti-Al system were compared with the experimental results and were in good accordance to the experimental results.

EFFECT OF SUBSTRATE BIAS ON THE DIAMOND GROWTH USING MICROWAVE PLASMA CVD

  • Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.303-306
    • /
    • 1999
  • On the effect of substrate bias at first stage of diamond synthesis at lower substrate temperature(approximately 673K) using microwave plasma CVD and effect of reaction gas system for the bias enhanced nucleation were studied. The reaction gas was mixture of methane and hydrogen or carbon monoxide and hydrogen. The nucleation density of applied bias -150V using $CH_4-H_2$ reaction gas system, significantly higher than that of $C-H_2$ reaction gas system. When the $CH_4-H_2$ reaction was used, nucleation density was increased because of existence of SiC as a interface for diamond nucleation. By use of this negative bias effect for fabrication of CVD diamond film using two-step diamond growth without pre-treatment, fabrication of the diamond film consist of diamond grains $0.2\mu\textrm{m}$ in diameter was demonstrated

  • PDF

Monitoring on the Soils and Plant Growth in Modular Sloped Rooftop Greening System (모듈형 경사지붕 녹화시스템의 토양과 식물생육 모니터링)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.53-67
    • /
    • 2011
  • The major objective of this study was to quantify the effects of substrate depth and substrate composition on the development of sedum etc., in a sloped rooftop (6 : 12 pitch) environment during a 4-year period. The experiment was conducted from 2006 October to 2010 December under several conditions without soil erosion control : two substrate depth (5cm, 10cm), four substrate composition (A5N3C2, A3N3C4, A6C4, G5L3C2: A: artificial lightweight soil, N : natural soil, G : granite decomposed soil, C : leave composite, L : loess), four sloped roof direction ($E40^{\circ}W$, $W40^{\circ}N$, $S40^{\circ}W$, $N40^{\circ}E$). In this experiment 4 sedum etc., were used: Sedum sarmentosum, Sedum kamtschaticum, Sedum rupestre, Sedum telephium, flowering herbs (mixed seed : Taraxacum platycarpum, Lotus corniculatus, Aster yomena, Aster koraiensis), western grasses (mixed seed : Tall fescue, Creeping redfescue, Bermuda grass, Perennial ryegrass). The establishment factor had two levels : succulent shoot establishment (sedum), seeding (flowering herbs, western grasses). 1. Enkamat, as it bring about top soil exfoliation, was unsuitable material for soil erosion control. 2. Sedum species exhibited greater growth at a substrate depth of 10cm relative to 5cm. All flowering herbs and western grasses established only at a substrate depth of 5cm were died. A substrate depth of 5cm was not suited in sloped rooftop greening without maintenance. If additional soil erosion control will be supplemented, a substrate depth of 10cm in sloped rooftop greening without maintenance was considered suitable. 3. For all substrate depth and composition, the most abundant species was Sedum kamtschaticum. The percentage of surviving Sedum kamtschaticum was 73.4% at a substrate depth of 10cm in autumn 2007 one year after the roof vegetation had been established. But the percentage of surviving other sedum were 33.3%~51.9%, therefor mulching for soil erosion control was essential after rooftop establishment in extensive sloped roof greening was proved. To raise the ratio of plant survival, complete establishment of plant root at substrate was considered essential before rooftop establishment. 4. There was a significant interaction between biomass and substrate moisture content. There were also a significant difference of substrate moisture and erosion among substrate composition. The moisture content of A6C4 was highest, the resistance to erosion of A5N3C2 was highest among substrate composition. The biomass of plants were not significantly higher in A5N3C2 and A6C4 relative to A3N3C4 and G5L3C2, For substrate moisture and erosion resistance, A5N3C2 and A6C4 were considered suitable in sloped rooftop greening without maintenance. 5. There were significant difference among roof slope direction on the substrate moisture. Especially, the substrate moisture content of $S40^{\circ}W$ was lower relative to that of $N40^{\circ}E$, that guessed by solar radiation and erosion.

Simulation Study on the Thickness Uniformity of Thin Film Deposited on a Large-Size Substrate in Multi-Source Evaporation System (다중소스 진공증착법에서의 대면적 박막균일도에 관한 전산모사 연구)

  • Kim, Chang-Gyu;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.56-66
    • /
    • 2011
  • Multi-source evaporation is one of the methods to improve the thickness uniformity of thin films deposited by evaporation. In this study, a simulator for the relative thickness profile of a thin film deposited by a multi-source evaporation system was developed. Using this simulator, the relative thickness profiles of the evaporated thin films were simulated under various conditions, such as the number and arrangements of sources and source-to-substrate distance. The optimum conditions, in which the thickness uniformity is minimized, and the corresponding efficiency, were obtained. The substrate was a 5th generation substrate (dimensions of 1300 mm ${\times}$ 1100 mm). The number of sources and source-to-substrate distance were varied from 1 to 6 and 0 to the length of the major axis of the substrate (1300 mm), respectively. When the source plane, the area on which sources can be located, is limited to the substrate dimension, the minimum thickness uniformity, obtained when the number of sources is 6, was 3.3%; the corresponding efficiency was 16.6%. When the dimension of the source plane is enlarged two times, the thickness uniformity is remarkably improved while the efficiency is decreased. The minimum thickness uniformity, obtained when the number of sources is 6, was 0.5%; the corresponding efficiency was decreased to 9.1%. The expansion of the source plane brings about not only the improvement of the thickness uniformity, but also a decrement of the efficiency and an enlargement of equipment.

Anisotropic, non-uniform misfit strain in a thin film bonded on a plate substrate

  • Huang, Y.;Ngo, D.;Feng, X.;Rosakis, A.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.123-142
    • /
    • 2008
  • Current methodologies used for the inference of thin film stresses through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. These methodologies have recently been extended to non-uniform stress and curvature states for the thin film subject to non-uniform, isotropic misfit strains. In this paper we study the same thin film/substrate system but subject to non-uniform, anisotropic misfit strains. The film stresses and system curvatures are both obtained in terms of the non-uniform, anisotropic misfit strains. For arbitrarily non-uniform, anisotropic misfit strains, it is shown that a direct relation between film stresses and system curvatures cannot be established. However, such a relation exists for uniform or linear anisotropic misfit strains, or for the average film stresses and average system curvatures when the anisotropic misfit strains are arbitrarily non-uniform.

Relationship between Working Parameter and Surface Nniformity of ITO coated Glass Substrate using Regression Analysis (회귀분석을 이용한 ITO 코팅유리기판의 표면균일도와 운전변수의 상관관계 분석)

  • 김면희;이상룡;이태영;배준영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1353-1356
    • /
    • 2004
  • In recent year, OLED(organic light emitted display) is used as the next generation device of FPD. OLED have been replacing the flat panel display device such as LCD, STN-LCD and TFT because this device is more efficient, economic and simple than those FPD devices, and this need not backlight system for visualization. The performance and efficiency of OLED is related with surface defect of ITO coated glass substrate. The typical surface defect of glass substrate is nonuniformity and bad surface roughness. ITO coated glass substrate is destroied for inspection about surface roughness and non-uniformity. Generally detection of the defects in the surface for ITO coated glass substrate is dependent on operator's experience. In this research, relationship between working parameter and surface non-uniformity is studied using regression analysis.

  • PDF

Room Temperature Preparation of Poly-Si Thin Films by IBE with Substrate Bias Method

  • Cho, Byung-Yoon;Yang, Sung- Chae;Han, Byoung-Sung;Lee, Jung-Hui;Yatsui Kiyoshi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.57-62
    • /
    • 2005
  • Using intense pulsed ion beam evaporation technique, we have succeeded in the preparation of poly crystalline silicon thin films without impurities on silicon substrate. Good crystallinity and high deposition rate have been achieved without heating the substrate by using lEE. The crystallinity of poly-Si film has been improved with the high density of the ablation plasma. The intense diffraction peaks of poly-Si thin films could be obtained by using the substrate bias system. The crystallinity and the deposition rate of poly-Si thin films were increased by applying (-) bias voltage for the substrate.

Substrate Specificity of UL97 Protein Kinase from Human Cytomegalovirus using Spot Assay (Spot Assay를 통한 Human Cytomegalovirus의 UL97 단백질 인산화 효소의 기질 특이성)

  • Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.268-271
    • /
    • 2006
  • Protein kinase UL97 is an unusual protein kinase that can phosphorylate nucleoside analogs as well as protein/peptide. Previously we found a H2B-derived peptide, KESYSVYVYKV and reported that the P+5 position (K) is important. To further understand the substrate specificity at the P+5 position, we introduced spot assay system and showed that a peptide containing K residue among other amino acids at the P+5 position is the best substrate. Also other residues such as M, I, L, or G are good enough to be substrate of UL97. This result may aid the discovery of a new antiviral inhibitor.

Enhancement of the nucleation density for diamond film on the pretreated glass substrate by the application of cyclic modulation of the source-gas flow rate

  • Kim, T.-G.;Kim, S.-H.;Kim, Y.-H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 2000
  • For the enhancement of the nucleation density of the diamond film, we introduced the cyclic process. The cyclic process was carried out by the on/off control of CH$_4$ flow rate for a relatively short time (10 min), compared with the total reaction time (6 h). Prior to depositing the diamond film, we made the pretreated glass substrate via the unidirectional scratch using ∼l $\mu\textrm{m}$ size diamond powders. Diamond films were deposited on the pretreated glass substrate in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. We observed the enhancement of the nucleation density of the diamond films caused by the cyclic process. Detailed surface morphologies of the substrate were investigated after the cyclic process. Based on these results, we discussed the cause for the enhancement of the nucleation density on the pretreated glass substrate by the cyclic process.

  • PDF

Large-scale synthesis of the carbon coils using stainless steel substrate

  • Jeon, Young-Chul;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.296-301
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under the thermal chemical vapor deposition system. A 304-type stainless steel was used as a substrate with nickel powders as the catalyst. The surface of the substrate was pretreated using a sand paper or a mechanical drill to enhance the production yield of the carbon coils. The characteristics of the deposited carbon nanomaterials on the substrates were investigated according to the surface state on the stainless steel substrate. The protrusion induced by the grooves on the substrate surface could enhance the formation of the carbon nanomaterials having the coils geometries. The cause for the enhancement of the carbon coils formation by the grooves was suggested and discussed with the surface energies for the interaction between as-growing carbon elements. Finally, we could obtain the massive production yield of the carbon coils by the surface pretreatment using SiC sand papers on the several tens grooved stainless steel substrate.