• Title/Summary/Keyword: Substrate removal rate

Search Result 159, Processing Time 0.026 seconds

A Study on the Characteristics of Wastewater Treatment by Rapid Infiltration Using Sand Soil (사토(砂土)를 이용(利用)한 급속토양삼투법(急速土壤滲透法)의 폐수처리(廢水處理) 특성(特性)에 관한 연구(研究))

  • Yang, Sang Hyon;Cho, Woong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 1987
  • In land treatment systems for organic waste removal, especially rapid intiltration method is well known as less climatic restrictions and less field area requirements as against the others. Therefore the present study on rapid infiltration is aimed to survey the waste removal rate, infiltration rate, variation of dissolved oxygen due to biological oxygen absorption and pH decrement using pilot infiltration column filled with permeable soil(sand) as media, also to find the waste load(COD) per unit area and nitrate conversion ratio from TKN. The results obtained here are as follows. 1) When the depth of sand layer is more than 1 meter, the COD removal would be reached steadly to 90% or more under the infiltration rate below 15~20cm/day, and would be no problem due to leached organic pollutants considering the depth of ground water table. 2) The COD removal per unit area($m^2$) can readily be expected to 10~14g/day with proper operation, and the decomposition of substrate would be attained mostly at the surface layer of the media. 3) Generally the conversion of TKN to the $NO_3{^-}$-N is seemed to be proportional to the COD removal rate if provided proper retention time.

  • PDF

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF

Differentiation in Nitrogen-Converting Activity and Microbial Community Structure between Granular Size Fractions in a Continuous Autotrophic Nitrogen Removal Reactor

  • Qian, Feiyue;Chen, Xi;Wang, Jianfang;Shen, Yaoliang;Gao, Junjun;Mei, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1798-1807
    • /
    • 2017
  • The differentiations in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of $0.24g/(g\;VSS{\cdot}h)$, were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed that a high dissolved oxygen concentration (>1.8 mg/l) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus Nitrosomonas) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of $40.4mg/(g\;VSS{\cdot}h)$ under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Candidatus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and the few Nitrospira spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish the CANON process independently under oxygen limiting conditions, maintaining a diversity of granular size would facilitate the stability of the suspended growth CANON system.

Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC (SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링)

  • Hyunseop Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.

The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2 (Delftia acidovorans EK2에 의한 고농도 Trichloroethylene (TCE)의 생물학적 분해 특성)

  • Park, Woo-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.

Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-I. Comparison of Activated Sludge Process (BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 I. 활성슬러지 공정과의 비교)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • To treat piggery wastewaters containing refractory compounds including nitrogen, biological treatments were investigated. In biological treatment, the removal efficiencies of organics and nitrogen by the activated sludge process and bioreactor using a BACC (Biological Activated Carbon Cartridge) media filled with granular activated carbon were examined. The results were as follows; in the biological process, when the approximate influent BOD concentration of 620 mg/L, through dilution, was treated by the activated sludge process, the process should be operated at a HRT of over 8 days to maintain an effluent BOD concentration of lower than 100 mg/L. In the treatment of piggery wastewater using a BACC bioreactor, when the HRT was 200 hours, the BOD, COD(sub)cr, and TKN removal efficiency of the effluent were 94, 75 and 64.3%, respectively. Comparing the BACC bioreactor with the activated sludge process, when the volumetric loading rate was 0.3 g BOD/L.day, the specific substrate removal rate of BOD was 0.14 g BOD removed/L.day in the activated sludge process which compared with 0.27 g BOD removed/L$.$day in the BACC bioreactor. The BACC bioreactor showed on average a 2-fold higher removal rate and was superior to the activated sludge process in wastewater treatment in terms of variations of loading time and high loading time. Therefore, the BACC process can effectively treat piggery wastewater containing high concentrations of nitrogen and organic compounds.

  • PDF

STUDIES ON THE MATHEMATICAL KINETICS FOR THE REMOVABLE MOVING SCREEN MEDIA-ACTIVATED SLUDGE PROCESS (회전형 반고정망 활성슬럿지 공법의 수학적 해법에 관한 연구 1. 유기물 제거속도에 대하여)

  • HAN Ung-Jun;HAN Yeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 1979
  • It is preented the removable moving screen media-activated sludge (REMSMAS) process by using the biological fixed-film systems. The substrate removal kinetic difference between the aeration-only completed mixing activated sludge (CMAS) process and REMSMAS process were observed. The substrate removal kinetics were developed based on the attached and suspended microbial growths. The units of the aeration-only CMAS process were continously operated with the normal detention time of 4.5, 6, 9.5 and 12 flours studies after steady-state condition and the operating of the REMSMAS units conducted with the normal detention time of 6 and 12 hours studies in nonsteady-state condition. The feed solution was diluted 18 times to the raw starch wastewater in of order to maintain the proper COD (950mg/l) and BOD (450mg/l) concentration. Design parameters related to the suspended microbial growths were caculated by the equations used in the aeration-only CMAS model and these parameters used to evalute the kinetic constants in the REMSMAS process. The kinetic constant values of $Y_2,\;K_d,(\mu_{max})_s\;and\;K_s$ from Monod equations were respectively 0.78, 0.027/hr, 1.1/hr and 95mg/l in the aeration-only CMAS process. The value of the aera capacity (F) appeared to be $9.1\;mg/cm^2-day$ and the mean value of the saturation constant $(K_g)$ appeared to be 53.5 mg/l in the REMSMAs process. Also, the substrate removal .ate of the REMSMAS process was higher than that of the normal activated sludge process when this system was operated in steady-state condition. However, the rate was reduced as the critical operating day was approached.

  • PDF

Stabilization of Quinonoid Intermediate E-Q by Glu32 of D-Amino Acid Transaminase

  • Ro Hyeon-Su;Jeon Che-Ok;Kim Hak-Sung;Sung Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1434-1440
    • /
    • 2006
  • The stable anchorage of pyridoxal 5'-phosphate (PLP) in the active site of D-amino acid transaminase (D-AT) is crucial for the enzyme catalysis. The three-dimensional structure of D-AT revealed that Glu32 is one of the active site groups that may playa role in PLP binding. To prove the role of Glu32 in PLP stability, we firstly checked the rate of the potential rate-limiting step. The kinetic analysis showed that the rate of the ${\alpha}$-deprotonation step reduced to 26-folds in E32A mutant enzyme. Spectral analyses of the reaction of D-AT with D-serine revealed that the E32A mutant enzyme failed to stabilize the key enzyme-substrate intermediate, namely a quinonoid intermediate (E-Q). Finally, analysis of circular dichroism (CD) on the wild-type and E32A mutant enzymes showed that the optical activity of PLP in the enzyme active site was lost by the removal of the carboxylic group, proving that Glu32 is indeed involved in the cofactor anchorage. The results suggested that the electrostatic interaction network through the groups from PLP, Glu32, His47, and Arg50, which was observed from the three-dimensional structure of the enzyme, plays a crucial role in the stable anchorage of the cofactor to give necessary torsion to the plane of the cofactor-substrate complex.

Estimation of Kinetic Coefficient and Assimilated Nutrients Mass in SBR Process (연속회분식 반응 공정에서 동역학적 계수 및 미생물합성에 사용된 영양물질 산정)

  • Ji, Dae-Hyun;Shin, Sang-Woo;Lee, Kwang-Ho;Lee, Jae-Kune
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.607-612
    • /
    • 2007
  • In this study, we investigated the variations of the kinetic coefficients and Chemical Oxygen Demand (COD), N and P mass used for assimilation of a sequencing batch reactor (SBR) system with the variation of SRTs; SRTs of 7.5, 10.0, 12.5, 15.0 and 20.0 days were tested in one cycle of SBR operation to determine the optimum conditions for the operation of the SBR and estimate its COD, nitrogen and phosphorus removal efficiencies. The SBR system was operated under the conditions as follows: an operation time of 6 hours per cycle, a hydraulic retention time (HRT) of 12 hours, an influent COD loading of $0.4kg/m^3/day$, and an influent nitrogen loading of $0.068kgT-N/m^3/day$. The yield coefficient (Y) and decay rate coefficient ($k_d$) were estimated to be 0.4198 kgMLVSS/kgCOD and $0.0107day^{-1}$ by calculating the removal rate of substrate according to the variation of SRT. Considering total nitrogen amount removed by sludge waste process, eliminated by denitrification, and in clarified water effluent with reference to 150 mg/cycle of influent nitrogen amount, the percentage of nitrogen mass balance from the ratio of the nitrogen amount in effluent (N output) to that in influent (N input) for Runs 1~5 were 95.5, 97.0, 95.5, 99.5, and 95.5%, respectively, which is well accounted for, with mass balances close to 100%.

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF