• Title/Summary/Keyword: Substrate pretreatment

Search Result 164, Processing Time 0.022 seconds

Biodegradation and Saccharification of Wood Chips of Pinus strobus and Liriodendron tulipifera by White Rot Fungi

  • Hwang, Soon-Seok;Lee, Sung-Jae;Kim, Hee-Kyu;Ka, Jong-Ok;Kim, Kyu-Joong;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1819-1825
    • /
    • 2008
  • Degradation and glucose production from wood chips of white pine (Pinus strobus) and tulip tree (Liriodendron tulipifera) by several white rot fungi were investigated. The highest weight losses from 4 g of wood chips of P. strobus and L. tulipifera by the fungal degradation on yeast extract-malt extract-glucose agar medium were 38% of Irpex lacteus and 93.7% of Trametes versicolor MrP 1 after 90 days, respectively. When 4 g of wood chips of P. strobus and L. tulipifera biodegraded for 30 days were treated with cellulase, glucose was recovered at the highest values of 106 mg/g degraded wood by I. lacteus and 450 mg/g degraded wood by T. versicolor. The weight loss of 10 g of wood chip of L. tulipifera by T. versicolor on the nutrient non-added agar under the nonsterile conditions was 35% during 7 weeks of incubation, and the cumulative amount of glucose produced during this period was 239 mg without cellulase treatment. The activities of ligninolytic enzymes (lignin peroxidase, manganese peroxidase, and laccase) of fungi tested did not show a high correlation with degradation of the wood chips and subsequent glucose formation. These results suggest that the selection of proper wood species and fungal strain and optimization of glucose recovery are all necessary for the fungal pretreatment of woody biomass as a carbon substrate.

Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency (나노결정질 다이아몬드 seeding 효율 향상을 위한 silicon 표면 texturing)

  • Park, Jong Cheon;Jeong, Ok Geun;Kim, Sang Youn;Park, Se Jin;Yun, Young-Hoon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • $SF_6/O_2$ inductively coupled plasmas were employed to texture Si surface as a pretreatment for nanocrystalline diamond film growth. It was found that the $SF_6/O_2$ plasma texturing provided a very wide process window where normalized roughness values in the range of 2~16 could be obtained. Significantly improved nucleation densities of ${\sim}6.5{\times}10^{10}cm^{-2}$ compared to conventional mechanical abrasion were achieved after seeding for the textured Si substrate.

Optimization of Cultivation Conditions on Effective Seedlings of Veronica rotunda var. subintegra (Nakai) T.Yamaz. (산꼬리풀의 효과적인 육묘를 위한 재배조건 최적화)

  • Lee, Sang In;Yeon, Soo Ho;Cho, Ju Sung;Jeong, Mi Jin;Lee, Cheol Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.181-188
    • /
    • 2020
  • This study was conducted to identify the optimal conditions for seedling growth in Veronica rotunda var. subintegra (Nakai) T.Yamaz. which a endemic plant and can be development as ornamental plants. We sowed V. rotunda var. subintegra (Nakai) T.Yamaz. seeds, and exposed the seedling was different treatment conditions. We varied soil type and fertilizer concentration, shading ratio, additional fertilizer concentration, pretreatment light exposure and collection time of seeds. We found that seedling growth was good in horticultural substrate (with no additional fertilizer), but mixed soils supplemented with fertilizer inhibited growth, regardless of the fertilizer concentration. In the 55% shading treatment, seedling growth was greater than in the non-shading treatment. High concentration addition of fertilizer (Hyponex) promoted plant growth, in terms of both plant length and fresh weight. Exposure of seeds to a red light-source prior to germination had a greater effect on seedling growth than exposure to other light sources. Seedlings exhibited better growth when grown from seed collected in 2018, rather than 2017.

Study on the Combined Treatment of Municipal Leachate and Sewage by Sequencing Batch Reactor. (연속회분식활성슬러지공법을 이용한 매립지 침출수와 하수의 병합처리에 관한 연구)

  • 이병인;이상혁
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 1993
  • An experimental research was conducted in order to study the treatability of leachate and a combined wastewater of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was obtained from Chungnang municipal sewage treatment plant of Seoul. Several sets of bench-scale sequencing batch reactor(SBR) were used as experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of the hydraulic retention time(HRT). The experiment lasted for about 8 months. The result are as follows ; 1) The characteristics of leachate were pH 7.4~8.1, BOD 280~450 mg/l, COD 1300 ~ 1350 mg/l, T-N 2021 ~2110 mg/1,7-P 2.7 ~3.2 mg/l, Cl-3540 ~4085 mg/l, and heavy metals are a very small amount. And the characteristics of sewage Ivere pH 6.9~7.3, BOD 78.4~129.3 mg/1, COD 121.2~305.0 mg/l, T-N 14.9~36.4 mg/l, T-P 1.3 ~5.9 mg/l. 2) The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before biological treatment and a combined treatment of municipal serfage. 3) The various contents of the leachate were 5%, 10%, and 50% and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage.

  • PDF

Effect of PCMB on Organic Ion Transport in Rabbit Renal Cortical Slices (토끼 신피질 절편에서 PCMB가 유기이온의 이동에 미치는 영향)

  • Park, In-Cheol;Kim, Tae-In;Jung, Dong-Keun;Kim, Young-Keun
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.345-352
    • /
    • 1990
  • To determine the role of sulfhydryl group in transport of organic ions across the basolateral membrane of renal proximal tubules, effect of p-chloromercuribenzoic acid (PCMB) on the transport of tetraethylammonium (TEA) and p-aminohippurate (PAH) was studied in rabbit renal cortical slices. PCMB caused irreversible inhibition of TEA and PAH uptake in a dose-dependent manner, with $I_{50}$ value (concentration for 50% inhibition) of $30\;{\mu}M$ for TEA and $75\;{\mu}M$ for PAH. Kinetic analysis of TEA and PAH uptakes showed that PCMB decreased Vmax $(62.35\;vs.\;28.32\;n\;mole/g{\cdot}min\;fur\;TEA:\;385.24\;vs.\;170.36\;n\;mole/g{\cdot}min\;for\;PAH)$ without changing Km. The inhibitory action of PCMB on TEA and PAH uptakes was independent of pH of the pretreatment medium. The inhibitory effect of PCMB on the uptake of TEA or PAH was prevented by dithiothreitol, but not by the substrate. PCMB inhibited Na-K-ATPase activity in a dose-dependent manner with $I_{50}$ value of $50\;{\mu}M$, which is similar to those for TEA and PAH uptake. These results suggest that PCMB inhibits the transport of organic cations and anions in the renal basolateral membrane by directly affecting the SH-group in the transporter molecules or secondly by altering the Na-K-ATPase activity.

  • PDF

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Increased Tolerance to Furfural by Introduction of Polyhydroxybutyrate Synthetic Genes to Escherichia coli

  • Jung, Hye-Rim;Lee, Ju-Hee;Moon, Yu-Mi;Choi, Tae-Rim;Yang, Soo-Yeon;Song, Hun-Suk;Park, Jun Young;Park, Ye Lim;Bhatia, Shashi Kant;Gurav, Ranjit;Ko, Byoung Joon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.776-784
    • /
    • 2019
  • Polyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.

Enzymatic Hydrolysis of Pre-treated Ulva pertusa with Alkaline Peroxide (구멍갈파래의 알칼리 과산화수소 전처리 및 효소 가수분해 특성)

  • Yoon, Byung-Tae;Kim, Young-Wun;Chung, Keun-Wo;Kim, Jin-Seog
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.336-339
    • /
    • 2011
  • Algae is an abundant and potential fermentation substrate. The enzymatic hydrolysis of algae was investigated by pre-treating an alkaline hydrogen peroxide with commercial cellulase and viscozyme. Algae used in this study was the Ulva pertusa. The evaluated response was the yield of released glucose after the enzymatic hydrolysis. Alkaline hydrogen peroxide containing mixtures of 1 wt% hydrogen peroxide and 1~1.75 wt% sodium hydroxide was also used. The results show that the highest glucose conversion was obtained for Ulva pertusa using 5 wt% hydrogen peroxide at $60^{\circ}C$ for 3 h. The required amount of enzymes after the pre-treatment with alkaline hydrogen peroxide were reduced by far compared to that of untreated Ulva pertusa. Also, the amount of glucose that is released during the enzymatic hydrolysis was increased.

Effect of Ginsenoside Rc on the Pharmacokinetics of Mycophenolic Acid, a UGT1A9 Substrate, and its Glucuronide Metabolite in Rats

  • Park, So-Young;Jeon, Ji-Hyeon;Jang, Su-Nyeong;Song, Im-Sook;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Previous in vitro studies have demonstrated that ginsenoside Rc inhibits UGT1A9, but there are no available data to indicate that ginsenoside Rc inhibits UGT1A9 in vivo. The effect of single and repeated intravenous injection of ginsenoside Rc was evaluated on the pharmacokinetics of mycophenolic acid. After injection of ginsenoside Rc (5 mg/kg for one day or 3 mg/kg for five days), 2-mg mycophenolic acid was intravenously injected, and the pharmacokinetics of mycophenolic acid and mycophenolic acid-β-glucuronide were determined. Concentrations of mycophenolic acid and its metabolite from rat plasma were analyzed using a liquid chromatography-triple quadrupole mass spectrometry. Single or repeated pretreatment with ginsenoside Rc had no significant effects on the pharmacokinetics of mycophenolic acid (P > 0.05): The mean difference in maximum plasma concentration (Cmax) and area under the concentration-time curve (AUCinf) were within 0.83- and 0.62-fold, respectively, compared with those in the absence of the ginsenoside Rc. These results indicate that ginsenoside Rc has a negligible effect on the disposition of mycophenolic acid in vivo despite in vitro findings indicating that ginsenoside Rc is a selective UGT1A9 inhibitor. As a result, ginsenoside Rc has little possibility of interacting with drugs that are metabolized by UGT1A9, including mycophenolic acid.

Effect of Substrate to Inoculum Ratio on Biochemical Methane Potential in the Thermal Pretreatment of Piggery Sludge (양돈분뇨의 열전처리에서 기질과 접종액의 비율이 메탄생산 퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Oh, Seong-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.532-539
    • /
    • 2012
  • This study was carried out to investigate the effect of substrate to inoculum ratio on ultimate methane potential ($B_u$) from piggery wastes. BMP(Biochemical methane potential) assays were executed for the three samples that have different organic characteristics (Filtrate of pig slurry, LF; Thermal hydrolysate of piggery sludge cake, TH; Mixture of LF and TH at the ratio of 4 to 1, Mix), and $B_u$ values obtained from BMP assays were compared with the theoretical methane potential ($B_{th}$) of each samples. While $B_u$ values (0.27, 0.44, and $0.46Nm^3\;Kg^{-1}-VS_{added}$) of TH sample that was pretreated with thermal hydrolysis were below the $B_{th}$ at all S/I ratios (0.1, 0.3, and 0.5), and $B_u$ values of LF (0.64 and $0.53Nm^3\;Kg^{-1}-VS_{added}$ for the S/I ratios of 0.1 and 0.3, respectively) at the lower S/I ratios of 0.1 and 0.3 exceeded the $B_{th}$ values ($0.418Nm^3\;Kg^{-1}-VS_{added}$). And also biodegradability ($B_u/B_{th}$) of LF sample were obtained as 152.07%, 122.67%, and 95.71% at the S/I ratios of 0.1, 0.3, and 0.5, respectively, and unreasonable $B_u/B_{th}$ values were presented at lower S/I ratios of 0.1 and 0.3. $B_u$ and $B_u/B_{th}$ of Mix sample showed a similar tendency with those of LF sample. Therefore, TH sample by thermal hydrolysis pretreatment showed lower anaerobic biodegradability than those of other samples (LF and Mix) and ultimate methane potentials of LF and Mix samples were overestimated in the lower S/I ratio of 0.1 and 0.3.