• Title/Summary/Keyword: Substrate glass

검색결과 1,660건 처리시간 0.028초

스퍼터링 방법을 이용한 중금속 산화물 유리 박막의 증착 (Deposition of Heavy Metal Oxide Glass Thin Films by R.F. Magnetron Sputtering)

  • 김웅권;허종;제정호
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.669-676
    • /
    • 1995
  • In this study, EO glass films were deposited by R.F. magnetron sputtering using EO glass target. The glass formation of the EO film was greatly dependent on the substrate temperature and the crystallization started at approximately 28$0^{\circ}C$. As the temperature of the substrate or the oxygen content in the sputtering gas increased, UV/VIS/NIR absorption edge moved toward longer wavelength. A wave guiding phenomenon was observed from the prism-coupler experiment and a fluorescence of 1.06${\mu}{\textrm}{m}$ originated from 4Fe3/2longrightarrow4I11/2 transition of Nd3+ was detected from the film containing Nd3+ ions.

  • PDF

실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzschia sp.의 성장 특성 (Effect of Attachment Substrate Size on the Growth of a Benthic Microalgae Nitzschia sp. in Culture Condition)

  • 오석진;윤양호;산본민차;양한섭
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제12권2호
    • /
    • pp.91-95
    • /
    • 2009
  • 저서성 미세조류의 성장에 미치는 부착기질의 영향을 알기 위해 서로 다른 크기의 glass bead를 첨가하여 저서성 미세조류 Nitzschia sp.(진해만 클론)의 성장을 조사하였다. 연구에 사용된 glass bead의 크기는 0.09-0.15 mm(G1), 0.25-0.50 mm(G2), 0.75-1.00 mm(G3) 그리고 1.25-1.65 mm(G4)이며, glass bead를 첨가하지 않는 대조구도 설정하였다. Nitzschia sp.의 가장 높은 성장속도(0.37/day)와 최대세포밀도($9,232{\pm}840$ cells/mL)는 가장 작은 크기의 glass bead를 첨가한 G1에서 나타났다. 그리고 성징속도와 최대세포밀도는 glass bead 크기의 증가와 함께 감소하였다(G4의 성장속도와 최대세포밀도는 각각 0.24/day와 $6,397{\pm}524$ cells/mL였다). 더욱이 대조구의 성장속도는 실험구 G1에서 G3의 성장속도보다 상당히 낮았다. 이 결과에서 Nitzschia sp.와 같은 저서성 미세조류를 위한 부착기질은 성장속도 뿐만 아니라 세포밀도에도 큰 영향을 주는 것으로 나타났다. 따라서 부착미세조류의 생리실험을 위해서는 예비실험으로 부착기질의 유무 및 대상 종에 적합한 부착입자의 크기의 고려가 필요할 것으로 보인다.

  • PDF

Mo기판 위에 sputtering 법으로 성장된 Si 박막의 결정화 연구 (The study of crystallization to Si films deposited using a sputtering method on a Mo substrate)

  • 김도영;고재경;박중현;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.36-39
    • /
    • 2002
  • Polycrystalline silicon (poly-Si) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays (AMLCD), allowing the integration of both active matrix and driving circuit on the same substrate (normally glass). As high temperature process is not used for glass substrate because of the low softening points below 450$^{\circ}C$. However, high temperature process is required for getting high crystallization volume fraction (i.e. crystallinity). A poly-Si thin film transistor has been fabricated to investigate the effect of high temperature process on the molybdenum (Mo) substrate. Improve of the crystallinity over 75% has been noticed. The properties of structural and electrical at high temperature poly-Si thin film transistor on Mo substrate have been also analyzed using a sputtering method

  • PDF

LTCC 기판위에 MEMS 인덕터 특성 연구 (Demonstration of MEMS Inductor on the LTCC Substrate)

  • 박제영;차두열;김성태;강민석;김종희;장성필
    • 한국전기전자재료학회논문지
    • /
    • 제20권12호
    • /
    • pp.1049-1055
    • /
    • 2007
  • Lots of integration work has been done in order to miniaturize the devices for communication. To do this work, one of key work is to get miniaturized inductor with high Q factor for RF circuitry. However, it is not easy to get high Q inductor with silicon based substrate in the range of GHz. Although silicon is well known for its good electrical and mechanical characteristics, silicon has many losses due to small resistivity and high permittivity in the range of high frequency. MEMS technology is a key technology to fabricate miniaturized devices and LTCC is one of good substrate materials in the range of high frequency due to its characteristics of high resistivity and low permittivity. Therefore, we proposed and studied to fabricate and analyze the inductor on the LTCC substrate with MEMS fabrication technology as the one of solutions to overcome this problem. We succeeded in fabricating and characterizing the high Q inductor on the LTCC substrate and then compared and analyzed the results of this inductor with that on a silicon and a glass substrate. The inductor on the LTCC substrate has larger Q factor value and inductance value than that on a silicon and a glass substrate. The values of Q factor with the LTCC substrate are 12 at 3 GHz, 33 at 6 GHz, 51 at 7 GHz and the values of inductance is 1.8, 1.5, 0.6 nH in the range of 5 GHz on the silicon, glass, and LTCC substrate, respectively.

Float 공법을 고려한 Plasma Display Panel용 기판유리 용융체의 특성 (Melt Properties of Plasma Display Panel Substrate Glasses Based on Float Process)

  • 김기동;정우만;정현수;권성구;최세영
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.433-438
    • /
    • 2006
  • In order to examine the working condition of melts in tin bath of float process it was investigated Sn diffusion behavior and solidification rate of melts for alkali-alkaline earth-silica PDP substrate glasses such as commercial CaO rich CS-77 glass, commercial $Al_2O_3$ rich PD-200 glass and self developed $SiO_2$ rich T-series (T-2, T-4, T-6) glasses. In the case of Sn depth and concentration created in glass surface by ion exchange between Sn and alkali, T-series showed lower value than CS-77, especially T-2 is more excellent than PD-200. The solidification rate of melts expressed by cooling time between $log{\eta}=4\;and\;7.6dPa{\cdot}s$ was low for T-series comparing with CS-77 and PD-200. Therefore, it was concluded that T-series is desirable considering forming condition in the tin bath of the float process.

Plasma Display Panel용 기판 유리용융체의 내화물 침식 (Corrosion of Refractory in Glass Melts for Plasma Display Panel Substrate)

  • 김기동;정현수;김효광
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.65-69
    • /
    • 2007
  • For self-developed alkali-alkaline earth-silicate and commercial glass melts for plasma display panel substrate, the corrosion behavior of fused casting refractory consisting of $Al_2O_3-ZrO_2-SiO_2$ was examined at the temperature corresponding to $10^2\;dPa{\cdot}s$ of melt viscosity by static finger methode. The corroded refractory specimens showed a typical concave shape due to interfacial convection of melts at their flux line. However, the corrosion thickness by commercial glass melts was $6\sim10$ times comparing to that by the self?developed melts. From the view point of the glass composition and the role of alkaline earth in glass network, it was discussed the effect of alkali/alkaline earth diffusion and temperature on the refractory corrosion.

Plasma Display Panel용 기판 유리의 조성과 성질 (Composition and Properties of Substrate Glasses for Plasma Display Panel)

  • 김기동;정우만;권성구;최세영
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.293-298
    • /
    • 2006
  • For substrate glass applied to PDP (Plasma Display Panel), it has been developed many glass compositions that have to not only meet the specifications of PDP but also satisfy the float process as production technology. In the present work several compositions with no deformation at PDP processing temperature and thermal expansion coefficient of $83{\sim}9{\times}10^{-7}/K$ were designed. Based on viscosity at high temperature and liquidus temperature for those compositions, three candidate compositions named T-2, T-4, T-6 were selected finally. It was examined additionally that thermal shrinkage at PDP processing temperature and visible transmittance. The properties of T-series were compared with those of commercial glasses and discussed from the view point of PDP device and glass production.

유리기판 표면 Etching을 통한 분광특성연구 (A Study on the Electrical Characteristics of Dye-Sensitized Solar Cell with Glass Substrate surface Etching)

  • 김해마로;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.534-537
    • /
    • 2019
  • 광학적 손실은 태양전지 표면에 조사되는 빛이 태양전지 내부로 흡수되지 않고 표면에서 반사되어 발생하는 손실이다. 이러한 빛의 반사로 인한 광학적 손실을 줄이고 태양전지의 변환 효율을 높이기 위한 연구가 활발하게 진행되고 있다. 본 논문에서는 유리기판 표면을 습식 식각을 사용하여 표면을 거칠게 형성해 식각된 표면의 구조적 특성을 평가하였고, 분광기를 통해 식각된 표면의 광학적 특성을 분석하였다. 식각을 통해 형성되는 분화구 모양의 거친 표면은 입사되는 빛을 태양전지 내부로 재흡수하여 빛의 반사를 줄어들었고, 이에 따라 투과되는 빛이 증가하였음을 확인하였다.

ANALYSIS OF THIN FILM POLYSILICON ON GLASS SYNTHESIZED BY MAGNETRON SPUTTERING

  • Min J. Jung;Yun M. Chung;Lee, Yong J.;Jeon G. Han
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.68-68
    • /
    • 2001
  • Thin films of polycrystalline silicon (poly-Si) is a promising material for use in large-area electronic devices. Especially, the poly-Si can be used in high resolution and integrated active-matrix liquid-crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs) because of its high mobility compared to hydrogenated _amorphous silicon (a-Si:H). A number of techniques have been proposed during the past several years to achieve poly-Si on large-area glass substrate. However, the conventional method for fabrication of poly-Si could not apply for glass instead of wafer or quartz substrate. Because the conventional method, low pressure chemical vapor deposition (LPCVD) has a high deposition temperature ($600^{\circ}C-1000^{\circ}C$) and solid phase crystallization (SPC) has a high annealing temperature ($600^{\circ}C-700^{\circ}C$). And also these are required time-consuming processes, which are too long to prevent the thermal damage of corning glass such as bending and fracture. The deposition of silicon thin films on low-cost foreign substrates has recently become a major objective in the search for processes having energy consumption and reaching a better cost evaluation. Hence, combining inexpensive deposition techniques with the growth of crystalline silicon seems to be a straightforward way of ensuring reduced production costs of large-area electronic devices. We have deposited crystalline poly-Si thin films on soda -lime glass and SiOz glass substrate as deposited by PVD at low substrate temperature using high power, magnetron sputtering method. The epitaxial orientation, microstructual characteristics and surface properties of the films were analyzed by TEM, XRD, and AFM. For the electrical characterization of these films, its properties were obtained from the Hall effect measurement by the Van der Pauw measurement.

  • PDF

반송제어모드를 이용한 인라인 식각/세정장치의 ITO 전극형성기술 (ITO Patterning of an In-line Wet Etch/Cleaning System by using a Reverse Moving Control System)

  • 홍성재;임승혁;한형석;권상직;조의식
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.327-331
    • /
    • 2008
  • An in-line wet etch/cleaning system was established for the research and development in wet etch process as a formation of electrode such as metal or transparent conductive oxide layer. A reverse moving system was equipped in the in-line wet etch/cleaning system for the alternating motion of glass substrate in a wet etch bath of the system. Therefore, it was possible for the glass substrate to be moved back and forth and it was possible to reduce the size of the system by using the reversing moving system. For the effect of the alternating motion of substrate on the etch rate in the in-line wet etch bath, indium tin oxide(ITO) patterns were obtained through wet etch process in the in-line system in which the substrate was moved back and forth. From the CD(critical dimension) skews resulted from the ADI CD and ACI CD of the ITO patterns, it was concluded that the alternating motion of glass substrate are possible to be applied to the mass production of wet etch process.