• Title/Summary/Keyword: Substitution reaction

Search Result 580, Processing Time 0.025 seconds

Chemical Reaction of Pentacene Growth on Hybrid Type Insulator by Annealing Temperature (하이브리드 타입 절연막 위에서 열처리 온도에 따른 펜타센 생성과 관련된 화학반응)

  • Oh Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.13-17
    • /
    • 2006
  • Pentacene channel for organic thin film transistor was deposited on the SiOC film by thermal evaporation. The growth of pentacene is related with the Diels-Alder reaction and the nucleophilic reaction by the thermal induction. The surface is an important factor to control the recursive Diels-Alder reaction for growing of pentacene on SiOC far The terminal C=C double bond of pentacene molecule was broken easily as a result of attack of the nucleophilic reagents on the surface of SiOC film. The nucleophilic reaction can be accelerated by increasing temperature on surface, and it maks pentacene to grow hardly on the SiOC film with a flow rate ratio of $O_2/(BTMSM+O_2)=0.5$ due to its inorganic property. The nucleophlic reaction mechanism is $SN_2(bimolecular nucleophilic substitution)$ type.

A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid (카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究))

  • Kim, Yong-In;Oh, Yang-Hwan;Kim, Kwang-Sik;Lee, Dong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9) (디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • Park, Geon-Yong;Kim, Jae-Hyoun
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

Necleophilic Substitution Reaction of Dansyl, Bansyl, Dabsyl Chloride (Dansyl, Bansyl, Dsbsyl Chloride의 친핵성 치환반응)

  • 김문식;채기수
    • The Korean Journal of Food And Nutrition
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 1992
  • Kinetic studies of nucleophilic substitution reactions of dansyl, bansyl, dabsyl chlorides with pyridines have been investigated at $0^{\circ}C$ in a range of methanol-acetonitrile binary solvent mixtures. The order of magnitude for reactivity of substrates with pyridines in the same reaction condition is dabsyl chloride>dansyl chloride> bansyl chloride. The value of $\rho$n(-2.29~ -4.66) and $\beta$(0.537~0.901) associated with a change substituent in the nucleophile are large and indicate a relatively advanced bond formation in the transition state. Solvatochromic correlations were predicted the increase of bond formation transition state according to the increasing MeCN contents, showing the greater contribution of polarity polarizability ($\pi$*) than hydro-gen bond donar acidity($\alpha$). We conclude that the reactions of dansyl, bansyl, dabsyl chlorides with pyridines proceed via associative Sn2 type reaction mechanism.

  • PDF

Determination of Reactivities by MO Theory (XI). Nucleophilic Substitution Reactions of N-Acetylpyrrolidone (MO 理論에 依한 反應性의 決定 (XI). N-아세틸피롤리돈의 親核性 置換反應)

  • Lee Ikchoon;Chung Dae Hyung;Lee Suk-kee;Kim Shi Choon
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.413-421
    • /
    • 1977
  • The orbital mixing analysis was applied to the acid-catalyzed nucleophilic substitution reaction of N-acetylpyrrolidone. It was found that the reactivity of protonated carbonyl carbon is greatly enhanced due to increase in positive charge (for charge controlled reaction) and also increase in LUMO AO coefficient (for orbital controlled reaction) of the carbonyl carbon atom.

  • PDF

The Substitution Reaction of Equatorial-Skew-[Co(TRDTRA)($OH_2$)] Complex with $CN^-, NO^{-}_{2}$ and $NCS^-$ ion (Equatorial-Skew형 [Co(TRDTRA)($OH_2$)] 착물과 $CN^-, NO^{-}_{2}$ 그리고 $NCS^-$ 이온간의 치환반응)

  • Dong-Yeub Kim;Young-Jae Cho;Dong-Jin Lee;Chang-Eon Oh;Doh Myung-ki
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.405-411
    • /
    • 1992
  • The substitution reaction and structrue of products obtained from the reaction of Equatorial-Skew-[Co(TRDTRA)($OH_2$)] (TRDTRA = trimethylenediaminetriacetate) with $CN^-, NO^{-}_{2}$ and $NCS^-$ ions have been investigated by means of electronic absorption spectroscopy and theoretical calculation based on the Yamatera's theory. According to kinetic data, the substitution reaction order for the complexes such as $CN^-, NO^{-}_{2}$ and $NCS^-$ was the first order, respectively, and overall reaction order was second order. It has been determined that the structure of products having $CN^{-} and NO^{-}_{2}$ ions was Polar-Chair type complexes which were accompanying with isomerization and having $NCS^-$ ion was Equatorial-Skew type complex which was not accompanying with isomerization.

  • PDF

Nucleophilic Substitution Reactions of Benzoic Anhyrides with Aniline in Methanol-Acetonitrile Mixtures (메탄올-아세토니트릴 혼합용매에서 벤조산 무수물과 아닐린의 친핵성 치환반응)

  • Lee, Byung Choon;Shin, Young Kook;Lee, Seung Woo;Lee, Ik Choon;Lee, Won Heui
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.69-76
    • /
    • 1997
  • Kinetic studies for the nucleophilic substitution reactions of the benzoic anhydrides with anilines in methanol-acetonitrile mixtures at$35.0{\circ}C$have been carried out in order to elucidate the reaction mechanism. Individual rate constants$k_{XY}$and$k_{XZ}$were decided from the ratios of the reaction products for the competitive substitution reaction at either one of the two carbonyl carbons in benzoic anhydride. Transition state structure and reaction mechanism were elucidated by the Hammett$p_x,\;p_y$and$p_z$values and cross interaction constant$p_x\;p_y$and$p_zvalues. The reaction of the benzoic anhydride has been proposed to proceed by a frontside attack$S_N2 $mechanism with four-membered ring transition state from unusually large magnitude of the$ρ_X,\;ρ_{XY},\;ρ_{XZ}$and positive$p_Y$values.

  • PDF

Comparison of Physicochemical Properties of Starch Phosphates Prepared by Dry Heating and Extrusion Process (건식법과 Extrusion 공정에 의해 제조한 인산전분의 이화학적 성질 비교)

  • Kim, Chong-Tai;Ryu, Gi-Hyung;Kim, Dong-Chul;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.651-658
    • /
    • 1990
  • Starch phosphates were prepared by dry heating, gelatinizing method and extrusion process using sodium tripolyphosphote (STPP) as a substitution reagent and their physicochemical properities were compared. In the preparation of starch phosphate by dry heating method(DSP), the effect of reaction temperature was the most significant to the DS(Degree of substitution). In the phosphorylation reaction with gelatinized starch(GSP), the substitution ratio was increased with increasing the reaction temperature, but the increase was insignificant above $85^{\circ}C$. By extrusion with the corn starch containing 2.0% STPP at various moisture contents of 20, 25 and 30%, the DS values of extrudate(WESP) were within the range of between 0.0066 and 0.0083. The starch phosphate(DSP) products showed lowering the gelatinization temperature, increasing the clarity of the starch paste. However, WESP showed higher gelatinization temperature than that of raw starch. The starch phosphate prepared by extrusion process showed lower apparent viscosity of paste than that of the DSP at same condition. All of starch phosphates showed reducing the tendency of the paste retrogradation.

  • PDF

A Study on the Separation of Cadmium from Waste Ni-Cd Secondary Batteries by Ion Substitution Reaction (이온치환 반응을 이용한 니켈-카드뮴 폐이차전지에서 카드뮴의 분리에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Ahn, Nak-Kyoon;Jeong, Hang-Chul;Jung, Soo-Hoon;Choi, Joong-Yup;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • In order to recycle waste nickel-cadmium batteries, cadmium was selectively removed by ion substitution reaction so that cadmium and nickel could be separated efficiently. The electrode powder obtained by crushing the electrode in the waste nickelcadmium battery was leached with sulfuric acid. The cadmium in the nickel-cadmium solution was precipitated with cadmium sulfide by the addition of sodium sulfide. Ion substitution experiments were carried out under various conditions. At the optimum condition with pH = -0.1 and $Na_2S/Cd=2.3$ at room temperature, the residual Cd in the solution was about 100 ppm, and most of it was precipitated with CdS.

Kinetics and Stereochemistry of CO Substitution Reactions of Half-Open Chromocene Carbonyls(Ⅲ): Reactions of $Cp^{*}(\eta^{5}-C_{5}H_{7})$CrCO and Phosphines

  • Jong-Jae Chung;Byung-Gill Roh;Yu-Chul Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.549-554
    • /
    • 1993
  • The CO substitution reactions in the complex, $Cp^*(C_5H_7)$CrCO with $PR_3(PR_3=PMePh_2,\;P(OCH_3)_3,\;PMe_2Ph)$ were investigated spectrophotometrically at various temperatures. For the reaction rates, it was suggested that the CO substitution reaction took place by first-order (dissociative) pathway. Activation parameters in decaline are ${\Delta}H^{\neq}= 21.99{\pm}2.4$ kcal/mol, ${\Delta}S^{\neq}= 8.9{\pm}7.1$ cal/mol·k. Unusually low value of ${\Delta}S^{\neq}$, suggested an ${\eta}^5-S{\to}\;{\eta}^5$-U conversion of the pentadienyl ligand. At various temperature, the rates of reaction for the Cp(pdl)CrCO complexes increase in the order $Cp^*(C_5H_7)$-CrCO < Cp$(C_5H_7)$CrCO < Cp(2,4-$C_5H_{11}$)CrCO, which can be attributed to the usual steric acceration or electronic influence for the ligand substitution of metal complexes. This suggestion was confirmed by the extended-Huckel molecular orbital (EHMO) calculations, which revealed that the energy of $[Cp^*(U-C_5H_7)Cr]^{\neq}$ transition state is about 4.93 kcal/mol lower than that of [Cp(S-$C_5H_7)Cr]^{\neq}$ transition state, and the arrangement of the overlap populations between Cr and the carbon of CO is $Cp^*(C_5H_7)$CrCO > Cp($C_5H_7$)CrCO > Cp(2,4-$C_7H_{11}$)CrCO.