• Title/Summary/Keyword: Substitute Industry

Search Result 217, Processing Time 0.024 seconds

Use of Additive in Peroxide Bleaching with Unbleached Kraft Pulp (크라프크 펄프 표백의 과산화수소 표백시 첨가제의 이용)

  • 김용식;김세종;윤병호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.78-85
    • /
    • 2000
  • Due to environmental proessures there is increasing use of hydrogen peroxide as a total or partial substitute for chlorine based bleaching agents within ECF or TCF sequences. However, to aceive satifactory brightness using peroxide alone, stages having a combination of high temperature, pressure, pH or residence time are required. It may also have negative impact on fiber quality . Therefore, it would be of advantage if vertain means could be found to make hydrogen peroxide more effective in bleacing , via shortening treaction time and allevaiating the need for such forcing reaction conditions. This can be achieve by converting the peroxide in-situ to stronger oxidant through the use of 손 bleach activator. In this study to investigate the influence of additives, such as tetraacetylethylenediamine (TAED) and Molybdate (MO) . addition on peroxide bleaching were carried out. Under alkaline conditions the bleching additives. TAED and Mo. can react H2O2 to form peracetic acid and peroxomolybdate respectively and these generated activators can improve deliginification,. The activators make it possible to bleach the pulp efficiently at low temperature in the range 50 to 7$0^{\circ}C$. Also, addition of TAED and Mo is an environmentally friendly way of enhancing the performance of peroxide bleaching can be incorporated into TCF and ECF sequences.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.

A Fundamental study on the Characteristics of Zeolite Cement Mortar (제올라이트 시멘트 모르타르의 재료적 특성에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Suk-Won;Park, Seung-Kook;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.203-209
    • /
    • 2011
  • The cement industry is expected to face a major set-back in the near future due to its large energy consumption and $CO_2$ production, causing global warming. In order to overcome these environmental problems, this research has bee carried out to find a cement substitute material. One possible cement substitute material is Zeolite cement. In this study, the materialistic characteristics of Zeolite cement mortar were evaluated. Natural Zeolite cement mortar was prepared using alkali activation (NaOH) instead of water ($H_2O$) to determine achievable strength and appropriate mixing ratio. Based on the mixing ratio, functional material was added to alkali active agent to harden Zeolite mortar to develop a highly functional construction material. The study result showed that pure Zeolite cement mortar achieved compressive strength of 42 MPa in 7 days depending on the mixing amount of alkaline catalyst and the hardening temperature, showing high efficiency and possibility as a new construction material.

A Study on the Demand for Timber in South Korea - with an Emphasis on the Long-term Forecasts - (우리나라의 목재수요(木材需要)에 관한 연구(硏究) - 장기수요전망(長期需要展望)을 중심으로 -)

  • Youn, Yeo Chang;Kim, Eui Gyeong
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.124-138
    • /
    • 1992
  • This study was carried out to estimate long-term demand functions, and to project consumption of roundwood to the year 2030, using time series data for the period 1970-1990. Especially, the unique features of this study are in the estimation of demand functions for roundwood by species group and by end-use with help of dummy variables. It also, attempts to show how dummy variables can be utilized for improving the estimation result. The result of this study reveals that hardwood roundwood consumption is being substituted by softwood roundwood due to the rapid increase in the relative price of softwood, and this trend is expected to continue in the near future. The consumption of roundwood by mining industry is projected to fall as the coal :mining is expected to decline. The parametric estimates of timber demand function by species group and by end-use indicate that the demand for timber in Korea is more responsive to the performance of domestic economy as a whole, represented by GDP in this study, than to other variables such as own and substitute prices. The effects of population growth and substitute prices could not be determined.

  • PDF

Evaluation of Program Effectiveness via Path Analysis : Focused on Plant Engineering Program (경로분석을 이용한 사업의 효과성 분석 : 플랜트엔지니어링사업을 중심으로)

  • Kim, Heung-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2017
  • When evaluating effectiveness of a R&D program, there is a tendency to simply compare the performances of the beneficiaries before and after the program or to compare the differences in the performances of the beneficiaries and the non-beneficiaries before-after the program. However, these ways of evaluating effectiveness of a program have some problems because they can not differentiate between complement effect, which facilitates corporate R&D investment, and substitute effect, which, literally, substitutes corporate R&D investment. Therefore, these problems could bring about wrong policies concerning R&D programs. In this paper, a new approach using path analysis is suggested as a means to overcome these problems and it is utilized, as an application, to evaluate the effectiveness of Plant Engineering Program conducted by Ministry of Trade, Industry & Energy, Korea. First, the direct impact of government R&D investment on corporate R&D investment is analyzed, through which it is identified which of crowding-in effect (complement effect) and crowding-out effect (substitute effect) is dominant. Next, the direct effect of government R&D investment on corporate performance and the direct effect of corporate R&D investment on corporate performance is analyzed respectively. Finally, by combining the two previous analysis, the total effect of government R&D investment on corporate performance is identified. As a result, it turns out that, in Plant Engineering Program, crowding-in effect is more dominant than crowding-out effect and that Plant Engineering Program has definitely positive effect on the beneficiary in terms of corporate performance indirectly and directly.

Physical Properties of Artificial Interior stone Using Waste Resources (폐자원을 활용한 내장용 인조석재의 물리적 특성)

  • Yoo, Yong-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.237-243
    • /
    • 2014
  • The environmental problem is serious due to global warming In a concrete industry, the effort to reduce the problem of the destruction of environment arising from the indiscriminate use of limestone that is the raw material of cement and aggregate and the exhaustion of resources are continually emphasized In this research, the waste porcelain and waste glass that are the natural aggregate substitute materials were mixed and were applied. In addition, the magnesia phosphate composite and fly ash are mixed with a cement substitute material and the properties of the artificial stone was examined. Density, water absorption, rate of aggregate on the surface, compressive strength, and flexural strength were performed. As a result of the test, it is that waste glass with 60% and waste porcelain with 70% are the most excellent mix to produce the artificial stone.

A Method for Visualizing a Large JT File of Ship Blocks in an Android Device (선박 블록 단위의 대용량 JT 파일을 안드로이드 기기에서 가시화하는 방법)

  • Cheon, Sanguk;Suh, Heung-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.258-266
    • /
    • 2013
  • In shipbuilding, 2D manufacturing drawings are crucial for building a ship. Even various types of 3D models are being utilized for supporting ship manufacturing, which does not reduce the importance of 2D drawings. Recently things are changing in the shipbuilding industry. To reduce the number of 2D drawings or to reduce the quantity of information contained in 2D drawings, some attempts that can substitute for 2D drawings are being made. One of the attempts is to visualize lightweight 3D manufacturing models in a mobile device. In this paper, a method for displaying lightweight 3D models of a ship in an Android based device is introduced. To overcome the problem with parsing JT files in Android system, JT files are parsed in a Windows based server and as-simple-as-possible visualization data are transmitted to an Android based viewer. A comparison result with a commercial system is also given.

The Economic Aspect of Gas Hydrate Development (경제성 측면에서의 가스하이드레이트 개발 가치)

  • Sin(Kim), Hwa-Young;Lee, Dong-Jun;Heo, Eun-Nyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.107-110
    • /
    • 2008
  • The price of natural gas import continues to rise, as well as its domestic consumption rate. This research examined the economic feasibility of domestically developing and producing gas hydrate to substitute imported natural gas. Today, the technology to commercially produce gas hydrate is still lacking; however, if the gas hydrate is able to be commercially produced domestically and replace imported natural gas, the annual economic benefit for the Republic of Korea would be 211 - 833 USD/ton. From the industry's point of view, gas hydrate is a high value investment since one can expect an annual profit of over 150USD/ton. The commercial value of gas hydrate development will increase as long as the natural gas market continues to expand and as the increase of natural gas consumption remains steady. With further development of technology, one can anticipate an even higher expected return on the investment.

  • PDF

Static/Dynamic Finite Element Analysis of Lightweight Suspension Part Fabricated by Application of phase Change Process (상변환 응용 경량 Suspension 부품의 정적/동적 유한요소해석)

  • 이정우;신현기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-851
    • /
    • 2002
  • In the field of automobile industry, lightweight problems are very important in terms of reducing fuel and protecting environment. To satisfy these demands, the attempt to substitute aluminum automobile components for cast steel part has been actively carried out. To fabricate the aluminum automobile suspension part that has the same mechanical properties with cast steel part, design conditions such as shape and dimension of part shall be established. Therefore in this study, shape and dimension conditions of suspension part were proposed. Aluminum automobile suspension part was fabricated by semi-solid die-casting process under the obtained design conditions. Moreover to evaluate the possibility of application to the automobile component, stress and fatigue analysis were performed by using ABAQUS S/W and compared with those of conventional automobile suspension part.

  • PDF