• Title/Summary/Keyword: Substance requiring preparation for accidents

Search Result 6, Processing Time 0.018 seconds

Evaluation of Adequacy of Upper and Lower Tier Qualifying Quantities for the Substance Requiring Preparation for Accidents (사고대비물질 상위 및 하위규정수량의 적정성 평가)

  • Kim, Hyodong;Kim, Haelee;Seo, Cheongmin;Jun, Jinwoo;Park, Kyoshik
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.10-17
    • /
    • 2022
  • Currently, in Korea, lower and upper tier qualifying quantities of the 97 substances requiring preparation for accidents have been designated. The information on the submission of chemical accident prevention management plan varies depending on whether the handling volume is above or below the lower or upper qualifying quantity. Because the criteria of the lower and upper qualifying quantities of substance requiring preparation for accidents are not stipulated in the Chemical Substances Control Act, this study attempted to establish a criterion through significance verification. In addition, the study investigated whether these qualifying quantities are related to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), toxic concentration endpoint, and National Fire Protection Association (NFPA). Finally, by comparing the risk categorization of the GHS, endpoint, and NFPA, it was evaluated whether the circulation-volume-based risk categorization of the substance requiring preparation for accidents that are in the top 13 is appropriate. The qualifying quantities of benzene, toluene, and sulfuric acid needed to be adjusted upward, while those of methyl alcohol and ammonia were adjusted downward from the current qualifying quantities. It is required to establish a quantified criterion that fully reflects the domestic situations in Korea and various indicators such as toxicity, physicochemical properties, and circulation volume for the qualified criterion of hazardous chemical substances. The study is expected to be helpful in establishing an efficient system by systematizing the criterion for qualifying quantity.

Study on the storage stability of allyl chloride and carbon disulfide in tedlar bags (테들라 백에서의 알릴클로라이드와 이황화탄소 보존성 연구)

  • Lee, Jinseon;Kim, Kijoon;Yoon, Junheon;Cho, Seokyeon
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.381-386
    • /
    • 2013
  • The sixty nine chemicals that are closely linked to chemical accident are designated as the substances requiring preparation for accidents and managed for public health under the Toxic Chemicals Control Act. In this study, storage stability of allyl chloride (AC) and carbon disulfide (CD), which are highly inflammable and volatile in tedlar bags, was studied for gaseous chemicals sampling. Storage stability was studied considering storage temperature ($2^{\circ}C$, $25^{\circ}C$), chemical concentration (low conc. ppm, high conc. ppm) and storage time (0, 48, 96, and 144 hr). Also, the stability of bags containing one type of chemical substance and the bags containing a mixture of chemicals was compared against each other. As a result, two chemicals showed decreasing storage stability based on storage time. Also two chemicals presented statistical significance of concentration and mixing type.

Estimation of Temporal Acute Exposure Guideline Levels for Emergency Response - A Brief Case using Formaldehyde - (화학사고 대응을 위한 시간별 급성노출기준 참고치 산정 - 폼알데하이드 사례 -)

  • Kim, Eunchae;Cho, Yong-Sung;Lee, Chung-Soo;Yang, Wonho;Hwang, Seung-Ryul;Park, Jihoon
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.166-174
    • /
    • 2021
  • Objectives: This study aimed to provide temporal Acute Exposure Guideline Levels (AEGL) for a hazardous substance as a pilot study. Methods: As one of the substances designated by the Korea Ministry of Environment as requiring preparations for potential accidents, formaldehyde was selected to estimate the AEGLs. The calculation was based on Haber's formula (Cn×t=k) using valid toxicity data (for humans/animals). A total of 96 points of AEGL levels were provided using an interval of five minutes over eight hours. Results: The AEGL-1 and 2 values were constant for the entire exposure duration at 0.9 ppm and 14 ppm, respectively. The values were obtained from clinical/animal tests, and the adaptation effect after a given exposure duration was also considered. AEGL-3 was based on animal toxicity data, and it was estimated from 127 ppm for the initial five minutes to 35 ppm for eight hours. Conclusions: More specific AEGL levels for formaldehyde could be obtained in this study using toxicity data with Haber's formula. Based on this methodology, it would be also possible to estimate AEGL levels that can be used at the scene of a chemical accident for other substances requiring preparation for potential accidents.

Task-Specific Hazardous Chemicals Used by Nail Shop Technicians (네일 샵 종사자들의 직무 형태별 취급 유해화학물질)

  • Choi, Sangjun;Park, Sung-Ae;Yoon, Chungsik;Kim, Sunju
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.446-464
    • /
    • 2015
  • Objectives: This study was conducted to evaluate the task-specific hazards of chemicals used by nail technicians in Daegu Metropolitan City. Materials: A total of 30 nail shops located in Daegu City were surveyed to investigate the major tasks and practices performed by nail technicians and the ingredients listed in nail care products used in shops. We also collected instructions for use and material safety data sheets(MSDSs) of nail care products and compared CAS Nos. of ingredients with the lists of chemicals regulated by the Industrial Safety and Health Act(ISHA) and Chemical Substances Control Act(CSCA). Results: A total of 125 chemical ingredients were found in 468 nail care products used at the 30 nail shops. The most frequently found ingredients were ethyl acetate(72%), followed by n-butyl acetate(71.8%), isopropanol(56%), benzophenone(51.1%), nitrocellulose(46.4%) and ethanol(45.3%). Comparing six tasks, the task of manicuring used the most products at 222 products containing 91 ingredients. Among the 125 ingredients, there are 31 chemicals with occupational exposure limits(OEL) designated by the Ministry of Employment and Labor(MoEL), eight categorized as carcinogens, one mutagen and two reproductive toxic chemicals. In terms of carcinogens, formaldehyde was identified as the only confirmed human carcinogen(1A). We found that there was one chemical with a permissible limit, one special management substance, 18 workplace monitoring substances and ten special health diagnosis substances regulated by ISHA. For CSCA, nine poisonous substances, six substances requiring preparation for accidents and one restricted substance were identified. Conclusions: Based on these findings, formaldehyde was identified as one of the chemicals that should most strictly be controlled for the protection of the health of nail technicians and customers. At the same time, it is necessary to distribute materials with detailed hazardous information of nail care products for nail shop technicians.

A Study on the Improvement Plan of Toxic Substance Designation Criterion Based on GHS Hazards (GHS 유해성을 기반으로 한 유독물질 지정체계 개선방안 연구)

  • Kim, Hyo-dong;Park, Kyo-shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.3
    • /
    • pp.209-220
    • /
    • 2022
  • Objectives: This study was performed to suggest how to re-establish criterion for toxic substances under the Chemical Control Act (CCA) in South Korea by comparing the GHS (Globally Harmonized System of Classification and Labeling of Chemicals) score and toxic properties. Methods: Toxic substances were classified into seven groups (Acute toxicity (1A), Chronic toxicity (2C), Environmental hazards (3E), Acute toxicity & chronic toxicity (4AC), Chronic toxicity & environmental hazards (5CE), Acute toxicity & environmental hazards (6AE), and Acute toxicity & chronic toxicity & environmental hazards (7ACE)) according to their toxic properties. The GHS score was calculated to sum up five toxicity indicators (health acute toxicity, health repeated toxicity, carcinogenicity, health other chronic toxicity and environmental hazards). Results: The GHS score of 7ACE was higher by 7 times that of 1A. 1A is the only group which has lower than the total GHS score. The highest score was 47, for sodium chromate (CAS no. 7775-11-3), which belongs to group 7ACE. This is classified as acute toxicity, carcinogenicity, germ cell mutagenicity, reproductive toxicity, and acute and chronic environmental hazard. On the other hand, the lowest score was 2.75, which was assigned to 177 chemicals belonging to group 1A. When the health acute toxicity indicator was omitted from the toxic criterion, toxic substances could be divided into the sub-groups 'human chronic hazards group' (HCG) and 'environmental hazards group' (EG) according to their GHS score and properties. Conclusions: The proposed criterion for toxic substances is to establish sub-groups defined as HCG and EG for separate control and that the 1A group be moved to substances requiring preparation for accidents under the CCA.

Analysis on the Legal Control Levels and GHS Classification Information Status for Strongly Acidic Hazardous Materials (강산성 유해화학물질의 법적관리 수준 및 GHS 분류정보 제공 실태분석 연구)

  • Lee, Kwon Seob;Jo, Ji Hoon;Park, Jin Woo;Song, Se Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.384-392
    • /
    • 2013
  • Objective: This study inspected incident cases, legal control levels, and GHS(Globally Harmonized System of Classification and Labeling of Chemicals) classification results of strong acids such as hydrogen fluoride, hydrogen chloride, nitric acid, and sulfuric acid, which have been responsible for many recent chemical accidents. As a result, it is deemed necessary for legal control levels of these strong acids to be revised and GHS classification be managed nation-wide. Methods: This study inspected incident cases and legal control levels for strong acids such as hydrogen fluoride, hydrogen chloride, nitric acid, and sulfuric acid. The study analyzed and compared chemical information status and GHS classification results. Results: There were 76 domestic incidents involving strongly acidic hazardous materials over the five years between 2007 and 2011. They include 37 leakage incidents(46.7%) within a workplace, 30 leakage incidents(39.5%) during transportation, and nine leakage incidents(13.8%) following an explosion. The strongly acidic materials in question are defined and controlled as toxic chemicals according to the classes of Substances Requiring Preparation for Accidents, Managed Hazardous Substance, Hazardous Chemical(corrosive) as set forth under the Enforcement Decree of the Toxic Chemicals Control Act and Rules on Occupational Safety and Health Standards of Occupational Safety and Health Act. Among them, nitric acid is solely controlled as a class 6 hazardous material, oxidizing liquid, under the Hazardous Chemicals Control Act. The classification results of the EU ECHA(European Chemicals Agency) CLP(Commission Regulation(EC) No. 790/2009 of 10 August 2009, for the purposes of its adaptation to technical and scientific progress, Regulation(EC) No 1272/2008 of the European Parliament and of the Council on classification, labeling and packaging of substances and mixtures) and NIER (National Institute of Environmental Research) are almost identical for the three chemicals, with the exception of sulfuric acid. Much of the classification information of NITE (National Institute of Technology and Evaluation) and KOSHA(Korea Occupational Safety and Health Agency, KOSHA) is the same. NIER provides 12(41.4%) out of 29 classifications, as does KOSHA.