• Title/Summary/Keyword: Substance accumulation

Search Result 71, Processing Time 0.033 seconds

Studies on microbial population affecting the decomposition of fir litter. (전나무낙엽의 분해에 따른 Microbial population의 변화에 관한 연구)

  • 장남기;임영득
    • Korean Journal of Microbiology
    • /
    • v.6 no.3
    • /
    • pp.93-99
    • /
    • 1968
  • 1) The aim of present investigation is to elucidate the relation of the balance of the production and decomposition of the fir litter. in Kwangnung plantation stands. 2) The decay constant, K, of litters was 0. 185 for the fir stand at Kwangnung. 3) The mode for the accumulation of organic carbon ($C_a$) is $c_a$= $610(1-e^{-0.185t})$), and for the decay of organic carbon (C) C = $610(1-e^{-0.185t})$. 4) The time required for the decay of half of the accumulated organic carbon in the fir stand is 3. 74 years and for 99% of elimination 27.02 years. 5) The litters of Abies holophylla killed by heat and washed with alcohol-benzol, with hot water, or with both alcohol-benzol and hot water were incubated after inoculated with suspension of firwood soil. Plate counts were made of fungi and bacteria from time to time. 6) Removal of the alcohol-benzol soluble substance stimulates at the beginning of the decay the growth of fungi and also of bacteria. 7) Removal of the water soluble fraction is detrimental to the growth of fungi in particular. 8) The distribution of soil microbial population is higher in both F and H horizon of the fir plantation soil in Kwangnung. However, the number of soil microorganisms decreases with the depth in forest soil.

  • PDF

Accumulation of Food Wastes Liquid Fertilizer using Reverse Osmosis Membrane System (역삼투막을 이용한 음식폐기물 액비의 농축)

  • Cha, Gi-Cheol;Hwang, Myoung-Goo;Lee, Myung-Gyu;Tae, Min-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2002
  • A lab-scale Reverse Osmosis(RO) membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and performance of elimination at different trans-membrane pressure(TMP) in the liquid fertilizer accumulated system. Experimental setup was divided to three different TMP conditions. As a result of experiment, permeability of RO membrane was proportional to the increase of TMP and temperature. After experiment was completed, two types chemical cleaning(remove the organic foulant and inorganic foulant) was done, and recover rate of permeability was each 99.8, 99.7 and 99.7%, respectively. From this experimental data, membrane fouling could be determined that the most of it was recoverable in this system, and major reason of fouling was concentration polarization. Elimination rate of solute substance in the liquid fertilizer indicated very stable(above 99%), except ammonia nitrogen, and the most stable elimination rate was investigated at the highest TMP condition (Run 3).

Antioxidant and Neuronal Cell Protective Effects of Aqueous Extracts from Lotus Leaf Tea

  • Jeong, Chang-Ho;Jeong, Hee-Rok;Choi, Sung-Gil;Heo, Ho Jin
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.115-127
    • /
    • 2012
  • Antioxidant and neuronal cell protective effects of aqueous extract from lotus (Nelumbo nucifera) leaf tea (LLTE) were investigated. The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging effect, ferric reducing antioxidant power, and malondialdehyde inhibition of LLTE were increased in a dose dependent manner. Intracellular reactive oxygen species accumulation resulting from hydrogen peroxide ($H_2O_2$) treatment was significantly reduced when LLTE were present in the media compared to PC12 cells treated with $H_2O_2$ only. In neuronal cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), LLTE showed protective effect against $H_2O_2$-induced neurotoxicity. In addition, lactate dehydrogenase release into medium was also inhibited by LLTE (7.13-43.89%). Total phenolics of LLTE were 33.16 mg/g and a quercetin was identified as major phenolics (105.93 mg/100g). Therefore, above these data suggest that LLTE including quercetin may be useful in the natural antioxidant substance, and may reduce the risk of neurodegenerative disease.

Removal of iron oxide scale from feed-water in thermal power plant using superconducting magnetic separation

  • Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.22-25
    • /
    • 2019
  • The superconducting magnetic separation system has been developing to separate the iron oxide scale from the feed water of the thermal power plant. The accumulation in the boiler lowers the heat exchange rate or in the worst case damages it. For this reason, in order to prevent scale generation, controlling pH and redox potential is employed. However, these methods are not sufficient and then the chemical cleaning is performed regularly. A superconducting magnetic separation system is investigated for removing iron oxide scale in a feed water system. Water supply conditions of the thermal power plant are as follows, flow rate 400 t / h, flow speed 0.2 m / s, pressure 2 MPa, temperature $160-200^{\circ}C$, amount of scale generation 50 - 120 t / 2 years. The main iron oxide scale is magnetite (ferromagnetic substance) and its particle size is several tens ${\mu}m$. As the first step we are considering to introduce the system to the chemical cleaning process of the thermal power plant instead of the thermal power plant itself. The current status of development will be reported.

Pueraria montana var. lobata Root Extract Inhibits Photoaging on Skin through Nrf2 Pathway

  • Heo, Hee Sun;Han, Ga Eun;Won, Junho;Cho, Yeonoh;Woo, Hyeran;Lee, Jong Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Pueraria montana var. lobata is a bioactive substance with various beneficial health effects and has long been extensively used as a traditional medication for the treatment of fever, acute dysentery, diabetes, and cardiovascular diseases in Northeast Asian countries. The purpose of this study was to evaluate the cytoprotective activity of Pueraria montana var. lobata ethanol extract (PLE) for ultraviolet B (UVB)-induced oxidative stress in human dermal fibroblasts (HDF). It was hypothesized that PLE treatment ($25-100{\mu}g/ml$) would reduce intracellular reactive oxygen species (ROS) levels as well as increase collagen production in UVB-irradiated HDF. The results confirmed this theory, with collagen production increasing in the PLE treatment group in a dose-dependent manner. In addition, regulators of cellular ROS accumulation, including HO-1 and NOQ-1, were activated by Nrf2, which was mediated by PLE. Hence, intracellular levels of ROS were also reduced in the PLE treatment group in a dose-dependent manner. In conclusion, PLE increases collagen production and maintains hyaluronic acid (HA) levels in human dermal fibroblasts exposed to UVB-irradiation, thereby inhibiting photoaging.

Antioxidant and Anti-Obesity Properties of Pectolinarin-rich Cirsium setidens Nakai Fine Powder (Pectolinarin 고함유 곤드레 미세분말의 항산화 및 항비만 활성)

  • Park, Sung-Jin;Kim, Hyun-Duk;Lee, Yoon-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • The aim of this study was to evaluate the basic data of Cirsium setidens Nakai fine powder (FPC), which will then be used in the development of functional fooditems. We measures and evaluated the level of pectolinarin content, phenol content, flavonoids content, antioxidants and anti-obesity properties of FPC. Our results from the study showed that the pectolinarin, phenol, and flavonoids contents of FPC measured at 10.95±0.1 5mg/g, 12.92±0.18 mg gallic acid equivalent (GAE)/g and 26.47±0.77 mg rutin equivalent (RE)/g, respectively. The exhibited antioxidant activity of FPC increased significantly depending on the dosage, and additionally. FPC did not show any cytotoxicity up to the dosage level of 500 μg/mL. During adipocyte differentiation, FPC significantly inhibited ROS production and lipid accumulation, compared with the control substance. These results suggest that FPC could be considered a promising resource of natural antioxidants and could serve a variety of health-improving roles in the production of functional food ingredients.

Studies on the Nitrogen Metabolism of Soybeans -III. Variation of Glutamic acid, Aspartic acid and its Amides during the Growth of Yonger Plants (대두(大豆)의 질소대사(窒素代謝)에 관(關)한 연구(硏究) -III. 유식물(幼植物) 시기(時期)에서의 Glutamine 산(酸)과 Asparagine 산(酸) 및 그 Amide의 소장(消長))

  • Kang, Y.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.55-59
    • /
    • 1970
  • In an effort to determine the bio-synthesis in the soybean as investigate to the variance of each substance: Glutamic acid, Aspartic acid and its amides during the growth of younger soybean plants. 1. The variance-curve of Gultamic acid and Aspartic acid as the acidic amino acids in the cotyledons was appeared the peak the first half period at Glutamic acid and the latter half at Aspartic acid in the growth of soybeans, and was received the symmetrical impression centering around the stage of adult leaf-development. But, in the embryonic organ, it appears the peak at both part, in the developmental stage of adult leaf and also appears near phenomena of increase and decrease in the variation-curve of metabolites. 2. It's amides-Gultamine and Asparagine-appears the peak at the developmental stage of adult leaf in the both cotyledons and embryonic organ, and rapid increase in the cotyledons were very impressed compare with the decrease at fallen stage of cotyledons in the embryonic organs. 3. In the relation of variance at Glutamic acid and Aspartic acid, both substance were discovered the fact of translocation from cotyledon to embryonic organ, and Glutamic acid could supposed that bear the charges of outrider substance in other amino acid as the Glutamic acid-self and major basic function for receiving the ammonia as the nitrogen contain constituent of plant. In the case of Glutamine, formation-mechanism of ammonia which develops due to its hydrolysis in the latter period of soybean growth, suggested that was forfeit its function till instance of fallen cotyledons. 4. In the relation the Aspartie acid and Asparagine, Aspartic acid which begins to decrease from seed-state was supposed that bear sufficiently the charge of outrider substance in the formation of Asparagine other than translocated to embryonic organ from cotyledon. And, formation-theory of Aspartic acid which suppose as formational substance from Kreb's cycle were recognized from latter period of soybean growth, and then, rapid accumulation of Asparagine's amounts were supposed that adapt to two theory: Theory which consider to transformation as Asparagine state for pressing to less than noxious weight the concentration of ammonia developing from the cells, and was formate and accumulate as ammonia or carbohydrates containing excess in the cotyledons.

  • PDF

Accumulation of oxyresveratrol in Ramulus mori upon postharvest storage (숙성에 의한 뽕나무 상지 내 옥시레스베라트롤 축적)

  • Kim, Jun-Ho;Kim, Ki-Hyun;Lee, Min-Young;Lim, Young-Hee;Kim, Jeong-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.98-104
    • /
    • 2018
  • Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene), found in many plants including grape, peanut and mulberry, is a phytoalexin, an antimicrobial and antioxidative substance that rapidly accumulates in areas infected by the pathogen. We examined the accumulation of oxyresveratrol in nine Morus alba L. cultivars with respect to storage time and temperature postharvest and infection with GRAS microorganisms. Among the nine cultivars, the Suwon cultivar showed the highest oxyresveratrol content (9.6-fold increase) postharvest, when stored at $30^{\circ}C$ for 7 days. The optimal temperature and postharvest storage time for oxyresveratrol accumulation was $30^{\circ}C$ and 6 days. When Ramulus mori was infected with five microorganisms, the accumulation of oxyresveratrol increased over 4-fold in response to B. coagulans infection. These results suggest that oxyresveratrol accumulation is influenced by storage temperature, storage time, Ramulus mori cultivars, and microbial attack. Therefore, postharvest storage for an appropriate time period at a suitable temperature might be a useful way to industrially produce Ramulus mori cultivars with high oxyresveratrol content.

The Oogenesis of Coreoleuciscus splendidus, Cyprinidae, Teleostei (경골어류 잉어과 쉬리(Coreoleuciscus splendidus)의 난자형성과정)

  • Kim, Dong-Heui;Kim, Wan-Jong;Teng, Yung-Chien;Kim, Seok;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.40 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • Coreoleuciscus splendidus is a teleost belonging to Gobioninae, Cyprinidae. The oogenesis was investigated by light microscope. The ovary was located between intestine and air bladder, a grayish and ellipsoidal shape with the major axis 20 mm and the minor axis 5 mm. Cytoplasm of oogonia was basophilic and many nucleoli were located at inside of nuclear membrane. In primary oocytes, yolk vesicles were distributed only in the marginal area and egg envelope was not formed on the outside of an egg. In secondary oocytes, the egg envelope was formed and yolk vesicles in the cytoplasm were increased than the earlier stage. The basophilic substance of cytoplasm was changed to acidic. In case of matured egg, thickness of egg envelope and size of egg were increased. The yolk vesicles were changed to yolk mass in accordance with development. In conclusion, the oogenesis of C. splendidus was characterized by the increase in cell size, the formation and accumulation of yolk, and the decrease of basophilic substance in the cytoplasm. The oogenesis of C. splendidus is similar with other Cyprinidae fishes. But further study on ultrastructural study of fertilized egg envelope will be necessary to get the species specificity.

Effect of Biotic Substances on Isoflavone Content in Soybean Germination (Biotic 물질이 콩 발아 중 Isoflavone 함량에 미치는 영향)

  • Kim, Seo-Young;Song, Young-Ho;Yi, Yoo-Jung;Kim, Hong-Sik;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.84-92
    • /
    • 2020
  • For humans, soybean and soybean products are the main dietary sources of isoflvones, which are polyphenolic compounds that represent one of the most common categories of phytoestrogens. The objective of this study was to determine isoflavone concentrations in soybean cultivars during germination when treated with some biotic substances. Three soybean cultivars were germinated in replicated trials in 2018/2019 and their individual and total isoflavone concentrations were determined using HPLC (High-Performance Liquid Chromatography). Significant differences were observed in total isoflavone content were observed among cultivars regardless of years and treatments. 'Daepung2-ho' and 'Uram' had significantly higher total isoflavones than 'Pungsannaul-kong'. Differences among treatments were also significant for total isoflavone content. In 2018, with chitosan treatment, total isoflavone concentration ranged from 551.15 to 7584.07 ㎍ g-1, with an average of 2972.64 ㎍ g-1 across cultivars. In 2019, there was no significant difference among treatments in total isoflavone content. Regarding individual isoflavone concentrations, the malonyl-glucoside groups accounted for over 85% of the total isoflavone content, which is indicated that these groups play an important role with regard to isoflavone components in soybean seeds. The individual proportions in the total concentrations of isoflavones varied according to germination period and seed tissues. Glucosides and malonyl-glucosides showed differences in concentrations among seed tissues, aglycones were further accumulated as germination period was progressed. This study suggests that biotic substances have an impact on seed isoflavone content during germination. However, cultivars with consistently high or low isoflavone concentrations across biotic substance treatments were identified desspite differences in germination period and seed tissues, demonstrating that the genetic factor plays the most important role in isoflavone accumulation.