• 제목/요약/키워드: Subspace Pursuit Algorithm

검색결과 4건 처리시간 0.015초

Using Subspace Pursuit Algorithm to Improve Performance of the Distributed Compressive Wide-Band Spectrum Sensing

  • Le, Thanh Tan;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제11권4호
    • /
    • pp.250-256
    • /
    • 2011
  • This paper applies a compressed algorithm to improve the spectrum sensing performance of cognitive radio technology. At the fusion center, the recovery error in the analog to information converter (AIC) when reconstructing the transmit signal from the received time-discrete signal causes degradation of the detection performance. Therefore, we propose a subspace pursuit (SP) algorithm to reduce the recovery error and thereby enhance the detection performance. In this study, we employ a wide-band, low SNR, distributed compressed sensing regime to analyze and evaluate the proposed approach. Simulations are provided to demonstrate the performance of the proposed algorithm.

무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정 (Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow)

  • 조선영;김종훈;김정호;이대우;조겸래
    • 한국항공우주학회지
    • /
    • 제37권3호
    • /
    • pp.267-274
    • /
    • 2009
  • 최근 무인 항공기(Unmanned Aerial Vehicle, UAV)는 다양한 임무수행이 가능한 무인 시스템이라는 점에서 크게 주목받고 있다. 특히 정찰, 추적 등의 임무는 영상을 이용하여 임무 수행이 이루어진다. 소형 무인 항공기의 경우 중량과 비용을 고려하여 단안 영상을 이용하는 임무 수행 연구가 활발하게 이루어지고 있다. 그러나 실제 지표면과 목표물이 고도 차이를 가지고 있어, 영상의 상대깊이를 고려하지 않은 3차원 거리는 임무 수행 시 오차 요인으로 작용 할 수 있다. 본 연구에서는 상대 깊이 추정을 위한 평균이동 알고리즘, 광류, 부분 공간법에 관하여 차례로 제시한다. 평균이동 알고리즘은 영상 내 목표물 추적과 관심영역을 결정하며 광류는 영상의 자기를 이용한 영상 이동 정보를 포함한다. 마지막으로 부분 공간법은 영상안의 움직임을 추정하며 각 영역의 상대깊이를 결정한다.

LMS and LTS-type Alternatives to Classical Principal Component Analysis

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • 제13권2호
    • /
    • pp.233-241
    • /
    • 2006
  • Classical principal component analysis (PCA) can be formulated as finding the linear subspace that best accommodates multidimensional data points in the sense that the sum of squared residual distances is minimized. As alternatives to such LS (least squares) fitting approach, we produce LMS (least median of squares) and LTS (least trimmed squares)-type PCA by minimizing the median of squared residual distances and the trimmed sum of squares, in a similar fashion to Rousseeuw (1984)'s alternative approaches to LS linear regression. Proposed methods adopt the data-driven optimization algorithm of Croux and Ruiz-Gazen (1996, 2005) that is conceptually simple and computationally practical. Numerical examples are given.

A New Compressive Feedback Scheme Based on Distributed Compressed Sensing for Time-Correlated MIMO Channel

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.580-592
    • /
    • 2012
  • In this paper, a new compressive feedback (CF) scheme based on distributed compressed sensing (DCS) for time-corrected MIMO channel is proposed. First, the channel state information (CSI) is approximated by using a subspace matrix, then, the approximated CSI is compressed using a compressive matrix. At the base station, the approximated CSI can be robust recovered with simultaneous orthogonal matching pursuit (SOMP) algorithm by using forgone CSIs. Simulation results show our proposed DCS-CF method can improve the reliability of system without creating a large performance loss.