• Title/Summary/Keyword: Subsonic Diffuser

Search Result 20, Processing Time 0.031 seconds

A Control of Two-Dimensional Subsonic Diffuser Flow Using the Turbulent Wake Caused by a Cylinder (실린더 후류를 이용한 2 차원 아음속 디퓨저 유동의 제어에 관한 연구)

  • Kim, Tae-Ho;Lee, Sang-Chan;Yoon, Bok-Hyun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.980-985
    • /
    • 2003
  • The present study addresses a computational work to investigate the influence of a turbulent wake flow on the pressure recovery of a subsonic diffuser. The turbulent wake is generated by a cylinder with a small diameter, which is installed at the inlet of a 2-dimensional diffuser. Computation are applied to three-dimensional steady Navier-Stokes equations. The fully implicit finite volume scheme is used to discretize the governing equations. The computational results are qualitatively well compared to the experimental results. The results show that the pressure recovery of the subsonic diffuser is dependent on the diameter and location of cylinder. It is found that a certain diameter and location of the cylinder to generate the turbulent wake give a better pressure recovery, compared with no cylinder flow.

  • PDF

A Computational Study of the Improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by a Cylinder (실린더 후류를 이용한 2 차원 디퓨저 성능개선에 관한 수치해석적 연구)

  • Kim, Tae-Ho;Yoon, Bok-Hyun;Oh, Dae-Geun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1720-1725
    • /
    • 2004
  • The present study addresses a computational work to investigate the influence of a turbulent wake flow on the pressure recovery of a two-dimensional subsonic diffuser. The turbulent wake is generated by a cylinder with a small diameter, which is installed at the diffuser inlet. Computation is applied to two-dimensional steady Navier-Stokes equations. The computational results are qualitatively well compared to existing experimental data. The results show that the diffuser pressure recovery is strongly dependent on the diameter and location of the cylinder. It is found that there is a certain diameter and location of cylinder for the diffuser pressure recovery to be most enhanced. Compared with no cylinder case, the diffuser performance increases up 24%.

  • PDF

Computational Study of the Bleed-Pump Type Subsonic/Sonic Ejector Flows (추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구)

  • Kim, Heuy-Dong;Kwon, Oh-Sik;Koo, Byoung-Soo;Choi, Bo-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.485-490
    • /
    • 2000
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends form the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

  • PDF

Computations of the Bleed-Pump Type Subsonic/Sonic Ejector Flows (추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구)

  • Choe, Bo-Gyu;Gu, Byeong-Su;Kim, Hui-Dong;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.269-276
    • /
    • 2001
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

A Study on the Flow Control in a Wide Angle Diffuser by Installation of a Rectangular Prism (광각디퓨저의 내부에 설치된 장방형 각주를 이용한 유동제어에 관한 연구)

  • Lee, Cheol-Jae;Cho, Dae-Hwan
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.57-62
    • /
    • 2011
  • In this study, a experimental work to investigate the influence of a turbulent wake flow on the velocity distribution of a diffuser with PIV method. The turbulent wake is generated by a rectangular prism, which is installed at the inlet of a diffuser. The results show that the velocity recovery of the subsonic diffuser is dependent on the height and location of rectangular prism. It is found that a certain height of the rectangular prism to generate the turbulent wake give a better velocity recovery, compared with no rectangular prism.

Analytical Study of the Subsonic/Sonic Ejector Flows (아음속/음속 이젝터의 유동에 관한 해석적 연구)

  • 최보규;김희동;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to predict the performance of subsonic/sonic ejector system and to provide fundamental data for a cost effective design, one dimensional gas dynamics theory was applied to the subsonic and sonic ejector systems with the second throat. In the current theoretical analyses, ejector throat area ratio, mass flow ratio and secondary stagnation pressure were derived as a function of the operating pressure ratio of the ejector, and the discharge coefficient of the primary nozzle and the loss coefficient of the diffuser were incorporated into the whole performance of the ejector system. The results of theoretical analysis can be applied to practical industrial use of subsonic and sonic gas ejector systems.

  • PDF

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

The improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by Cylinder (실린더 후류를 이용한 2차원 디퓨저 성능개선)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.614-618
    • /
    • 2014
  • 본 연구에서는 디퓨저의 압력회복을 높이기 위해 디퓨저 입구에 실린더를 설치하여 후류가 압력회복에 어떤 영향을 미치는지 알아보았다. 2D-Incomp-2.1-P 해석자를 이용하여 속도, 압력에 따른 유동가시화를 통해 내부유동을 분석하였고, 압력회복계수를 비교하여 디퓨저 입구에 설치된 실린더의 후류가 디퓨저 성능에 어떤 영향을 주는지 비교하였다. 그결과 실린더를 설치하였을 때 확대부에서의 박리영역이 더 작아졌고 압력회복계수가 더 높아졌다.

  • PDF

A Numerical Study on Flow and Heat Transfer Characteristics of Supersonic Second Throat Exhaust Diffuser for High Altitude Simulation (고고도 모사용 초음속 이차목 디퓨저의 유동 및 열전달 특성에 대한 수치적 연구)

  • Yim, Kyungjin;Kim, Hongjip;Kim, Seunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.70-78
    • /
    • 2014
  • A numerical study has been conducted to investigate flow and heat transfer characteristics of supersonic second throat exhaust diffusers for high altitude simulation. By changing pressure and configuration, flow and cooling characteristics of the diffuser have been studied. At the normal operation of the diffuser, there were high temperature regions over 3,000 K without cooling, especially near wall and in subsonic diffuser part. If the cooling system of the diffuser is added, flow velocity is increased due to the cooled wall temperature.

Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser (초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구)

  • Kim, Jong Rok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • A study is analyzed on the adverse pressure gradient and the transient regime of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and static temperature of vacuum chamber according to pressure variation of rocket engine combustion chamber. Combustion gas flow into the vacuum chamber during operation of the supersonic diffuser. According to this phenomenon, the pressure and the temperature rise in the vacuum chamber were observed. Thus, the protection system will be necessary to prevent the pressure and temperature rise in the transition process during operation of the subsonic diffuser.