DOI QR코드

DOI QR Code

A Numerical Study on Flow and Heat Transfer Characteristics of Supersonic Second Throat Exhaust Diffuser for High Altitude Simulation

고고도 모사용 초음속 이차목 디퓨저의 유동 및 열전달 특성에 대한 수치적 연구

  • Yim, Kyungjin (Department of Mechanical Engineering, Graduate School. Chungnam National University) ;
  • Kim, Hongjip (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Seunghan (Propulsion Test Team, Korea Aerospace Research Institute)
  • Received : 2014.06.05
  • Accepted : 2014.09.18
  • Published : 2014.10.01

Abstract

A numerical study has been conducted to investigate flow and heat transfer characteristics of supersonic second throat exhaust diffusers for high altitude simulation. By changing pressure and configuration, flow and cooling characteristics of the diffuser have been studied. At the normal operation of the diffuser, there were high temperature regions over 3,000 K without cooling, especially near wall and in subsonic diffuser part. If the cooling system of the diffuser is added, flow velocity is increased due to the cooled wall temperature.

고고도 모사를 위한 초음속 이차목 디퓨저의 유동 및 열전달 특성에 대한 수치적 연구를 수행하였다. 디퓨저의 유동 특성에 영향을 주는 작동압력과 형상을 변화시켜 유동 특성과 냉각 특성을 파악하였다. 냉각이 없는 경우 디퓨저가 시동 된 후, 디퓨저 벽과 아음속 구간에서 3,000 K 이상의 고온 구간이 나타났다. 디퓨저에 냉각 시스템을 추가하면 벽면 근처가 냉각되면서 유속이 빨라져 유동 길이가 길어지고 유동 박리와 함께 압력 회복이 급격해진다. 디퓨저 내부에 압력 변화를 가져오는 유동 현상과 함께 heat flux의 경향도 유사하게 나타났다.

Keywords

References

  1. Goethert, B.H., "High Altitude and Space Simulation Testing," ARS Journal, Vol. 32, No. 6, pp. 872-882, 1962. https://doi.org/10.2514/8.6162
  2. Sung, H.G., Yeom, H.W., Yoon, S.K., Kim, S.J. and Kim, J.G., "Investigation of Rocket Exhaust Diffuser for Altitude Simulation," Journal of Propulsion and Power, Vol. 26, No. 2, pp. 240-247, 2010. https://doi.org/10.2514/1.46226
  3. Jun, J.S., Kim, W.C., Yeoun, H.I., Kim, M.S., Ko, Y.S. and Han, Y.M., "An Experimental Study on Performance of Second Throat Exhaust Diffusers of Different Configuration," Transactions of the Korean Society of Mechanical Engineers B, Vol. 38, No. 4, pp. 279-288, 2014. https://doi.org/10.3795/KSME-B.2014.38.4.279
  4. Kang, S.I. and Huh, H.I., "A CFD Study for Rocket Exhaust Flow Using Single Species, Unreacted Flow Model," Aerospace Engineering and Technology, Vol. 11, No. 1, pp. 126-134, 2012.
  5. Gordon, S. and Mcbridge, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA, RP-1311, 1996.
  6. Ansys 14 Fluent User's Guide, Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates, 2011.
  7. Ansys 14 Fluent Theory Guide, Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates, 2011.
  8. Kim, T.W., Jun, J.S., Kim, W.C., Ko, Y.S., Kim, S.J. and Han, Y.M., "Construction of High Altitude Test Facility for Liquid Rocket Engine," Proceedings of the 2014 KSPE Spring Conference, Seoul, Korea, ISSN 2234-4748, pp. 51-56, May. 2014.
  9. Huzel, D.K. and Huang, D.H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, Progress in Astronautics and Aeronautics, Vol. 147, pp. 84-86, 1992.