• Title/Summary/Keyword: Subset selection

Search Result 203, Processing Time 0.029 seconds

On an Optimal Bayesian Variable Selection Method for Generalized Logit Model

  • Kim, Hea-Jung;Lee, Ae Kuoung
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.617-631
    • /
    • 2000
  • This paper is concerned with suggesting a Bayesian method for variable selection in generalized logit model. It is based on Laplace-Metropolis algorithm intended to propose a simple method for estimating the marginal likelihood of the model. The algorithm then leads to a criterion for the selection of variables. The criterion is to find a subset of variables that maximizes the marginal likelihood of the model and it is seen to be a Bayes rule in a sense that it minimizes the risk of the variable selection under 0-1 loss function. Based upon two examples, the suggested method is illustrated and compared with existing frequentist methods.

  • PDF

Feature Selection Based on Bi-objective Differential Evolution

  • Das, Sunanda;Chang, Chi-Chang;Das, Asit Kumar;Ghosh, Arka
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.130-141
    • /
    • 2017
  • Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the proposed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of features, and a high number of objects with a low number of features.

Effective Multi-label Feature Selection based on Large Offspring Set created by Enhanced Evolutionary Search Process

  • Lim, Hyunki;Seo, Wangduk;Lee, Jaesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.7-13
    • /
    • 2018
  • Recent advancement in data gathering technique improves the capability of information collecting, thus allowing the learning process between gathered data patterns and application sub-tasks. A pattern can be associated with multiple labels, demanding multi-label learning capability, resulting in significant attention to multi-label feature selection since it can improve multi-label learning accuracy. However, existing evolutionary multi-label feature selection methods suffer from ineffective search process. In this study, we propose a evolutionary search process for the task of multi-label feature selection problem. The proposed method creates large set of offspring or new feature subsets and then retains the most promising feature subset. Experimental results demonstrate that the proposed method can identify feature subsets giving good multi-label classification accuracy much faster than conventional methods.

Projection of Spatial Correlation-Based Antenna Selection for Cognitive Radio Systems in Correlated Channels (인지무선 시스템의 상관채널에서 공간 상관 행렬 사영을 이용한 안테나 선택기법)

  • Cho, Jae-Bum;Jang, Sung-Jeen;Jung, Won-Sik;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.8-16
    • /
    • 2012
  • Recent work has been shown that cognitive radio systems with multiple antenna at both transmitter and receiver are able to improve performance of secondary users. In such system, the main drawback is the increased complexity and raised cost as the number of antennas increase. It is desirable to apply antenna selection which select a subset of the available antennas so as to solve these problems. In this paper, we consider antenna selection method for cognitive radio systems in correlated channel from the IEEE 802.11n. For a multiple-input multiple-output(MIMO) system with more antennas at transmitter than the receiver, we select the same number of transmit antennas as that of receive antennas. The exhaustive search for optimal antenna becomes impractical. We present criterion for selecting subset in terms of projection of channel correlation vector to increase performance of secondary user with decreasing interference at primary user.

A Bayes Criterion for Selecting Variables in MDA (MDA에서 판별변수 선택을 위한 베이즈 기준)

  • 김혜중;유희경
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.435-449
    • /
    • 1998
  • In this article we have introduced a Bayes criterion for the variable selection in multiple discriminant analysis (MDA). The criterion is a default Bayes factor for the comparision of homo/heteroscadasticity of the multivariate normal means. The default Bayes factor is obtained from a development of the imaginary training sample method introduced by Spiegelhalter and Smith (1982). Based an the criterion, we also provided a test for additional discrimination in MDA. The advantage of the criterion is that it is not only applicable for the optimal subset selection method but for the stepwise method. More over, the criterion can be reduced to that for two-group discriminant analysis. Thus the criterion can be regarded as an unified alternative to variable selection criteria suggested by various sampling theory approaches. To illustrate the performance of the criterion, a numerical study has bean done via Monte Carlo experiment.

  • PDF

Performance Comparison between Genetic Algorithms and Dynamic Programming in the Subset-Sum Problem (부분집합 합 문제에서의 유전 알고리즘과 동적 계획법의 성능 비교)

  • Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.259-267
    • /
    • 2018
  • The subset-sum problem is to find out whether or not the element sum of a subset within a finite set of numbers is equal to a given value. The problem is a well-known NP-complete problem, which is difficult to solve within a polynomial time. Genetic algorithm is a method for finding the optimal solution of a given problem through operations such as selection, crossover, and mutation. Dynamic programming is a method of solving a given problem from one or several subproblems. In this paper, we design and implement a genetic algorithm that solves the subset-sum problem, and experimentally compared the time performance to find the answer with the case of dynamic programming method. We selected a total of 17 test cases considering the difficulty in a set with 63 elements of positive number, and compared the performance of the two algorithms. The presented genetic algorithms showed time performance improved by 84% on 13 of 17 problems when compared with dynamic programming.

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

Two dimensional reduction technique of Support Vector Machines for Bankruptcy Prediction

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Lee, Ki-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.608-613
    • /
    • 2007
  • Prediction of corporate bankruptcies has long been an important topic and has been studied extensively in the finance and management literature because it is an essential basis for the risk management of financial institutions. Recently, support vector machines (SVMs) are becoming popular as a tool for bankruptcy prediction because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. In addition, they don't require huge training samples and have little possibility of overfitting. However. in order to Use SVM, a user should determine several factors such as the parameters ofa kernel function, appropriate feature subset, and proper instance subset by heuristics, which hinders accurate prediction results when using SVM In this study, we propose a novel hybrid SVM classifier with simultaneous optimization of feature subsets, instance subsets, and kernel parameters. This study introduces genetic algorithms (GAs) to optimize the feature selection, instance selection, and kernel parameters simultaneously. Our study applies the proposed model to the real-world case for bankruptcy prediction. Experimental results show that the prediction accuracy of conventional SVM may be improved significantly by using our model.

  • PDF

An ADHD Diagnostic Approach Based on Binary-Coded Genetic Algorithm and Extreme Learning Machine

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.111-117
    • /
    • 2016
  • An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.