• Title/Summary/Keyword: Subsea oil production system

Search Result 13, Processing Time 0.027 seconds

Study on Simulation of Subsea Production System (Subsea 생산 시스템 시뮬레이션에 관한 연구)

  • Park, Ju Yong;Jo, Hyo Jae;Lee, Seung Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The purpose of this study was the implementation of a simulation for a subsea production system. This subsea production system is installed under environments with high pressure and low temperature. Most of the processes for oil and gas production occur in the subsea equipment. Therefore, an understanding and study of subsea production systems is very difficult because people cannot directly observe the processes occurring in the subsea production system. A simulation system can be a useful solution for this difficult problem. In this research, information models and a 3-D graphic model of the subsea equipment were built using the object-oriented technology and 3-D CAD. The entire system was implemented with the help of simulation software, 3-DVIA Virtools. The simulation system for the subsea production system was tested using several production process scenarios. The results of the tests showed that the simulation system is very useful for understanding a subsea production system and could be a good educational tool.

Development of a Prototype Data Logger System to Operate under Extreme High Pressure

  • Yoo, Nam-Hyun;Rhee, Sang-Yong;Lee, Hyeong-Ok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.113-121
    • /
    • 2014
  • A subsea oil production system must be safely operated for 20-30 years after being installed. Because of the severe conditions of the subsea environment, such as extreme high pressure, low visibility, the possibility of unexpected impact by any object, and corrosion by seawater, subsea oil production systems should be monitored by subsea data logger systems and remotely operated vehicles to check for abnormal vibration and leakage to prevent a catastrophic accident. Because of the severity of subsea environmental conditions and the dominance of a few companies in the market, many people have thought that it would be difficult to develop a subsea data logger system. The primary objectives of the study described in this paper were to analyze existing subsea data logger systems to establish the requirements for a subsea data logger system, implement a prototype subsea data logger system, and conduct a test of the prototype subsea data logger system.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

FTA of Leakage Path in Subsea X-mas Tree System (해저 유정 제어 시스템에서의 누수 경로 FTA 분석)

  • Yoo, Won-Woo;Park, Min-Sun;Yang, Young-Soon;Ruy, Won-Sun;Jang, Beom-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.85-90
    • /
    • 2013
  • The growing need for energy (oil and gas) has led to offshore resource development. As a reflection of this trend, there have been many advances in the technologies used for the subsea production systems that make offshore resource development possible. As the technologies for subsea production systems continue to grow, a subsea X-mas tree, the core equipment in a subsea production system, is required to have more functions than before. Generally, these complex functions lead to a change in its configuration. Therefore, this paper investigates a change in a subsea X-mas tree system to enhance system understanding, and conducts a leakage path analysis of a subsea X-mas tree system. Utilizing the recent configuration of the subsea X-mas tree, an identification of the leakage path and a quantitative risk analysis for the leakage using an FTA (fault tree analysis) are conducted.

Study on Parameters for Optimum Design of Integrated Subsea System (Subsea System 최적 설계 요소에 관한 연구)

  • Choi, Han-Suk;Do, Chang-Ho;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.340-349
    • /
    • 2012
  • The mitigation of gap between technology and it's applicability in the oil and gas industry has led to a rapid development of deepwater resources. Historically, subsea wells have good track records. However, an ever increasing water depths and harsher environments being encountered are currently posing challenges to subsea production. Complex subsea systems are now being deployed in ways rarely encountered in previous development schemes. These increasingly complex systems present a number of technical challenges. This study presents the challenges in subsea production systems, considering the technical and safety issues in design and installation associated with current development modality.

A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator (In-line형 심해 유수분리기의 분리 효율에 관한 연구)

  • Kim, Hyun-Ji;Kim, Gwi-Nam;Kim, Young-Ju;Woo, Nam-Sub;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

Semi-submersible Drilling Rig and Drilling Equipment (반 잠수식 시추선 및 주요장비에 대한 이해)

  • An, Byoung-Ky;Oh, Hyun-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.86-92
    • /
    • 2012
  • An exploration well is drilled where oil or gas potential is shown by a seismic survey and interpretation. With the advance of drilling technology, most of the easily accessible oil had been developed by the end of the 20th century. To satisfy the ever increasing demand for oil, and bolstered by high oil prices, the major oil companies started to drill in deep water, which requires a deep offshore drilling unit. Offshore drilling units are generally classified by their maximum operating water depth. Many semi-submersible rigs have been purpose-designed for the drilling industry as the allowable drilling water depth has become deeper by the developed technics since the first semi-submersible was launched in 1963. Semi-submersible rigs are commonly used for shallow to deep water up to 3,000 m. Drilling equipment such as a top drive, blowout preventer, drawworks and power system, mud circulation system, and subsea wellhead system are explained to help with an understanding of offshore drilling procedures in the oil and gas fields. The objective of this paper is to introduce the main components of a semi-submersible rig and, by doing so, to raise the awareness of offshore drilling, which accounts for over 30% of the total oil production and will continue to increase.

Basic Design of Deep Subsea Manifold Frame Structure for Oil Production (심해저 원유 생산용 매니폴드 프레임 구조 기본 설계)

  • Park, Se-Yung;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 2015
  • Amanifold is one of the essential subsea oil and gas production components to simplify the subsea production layout. It collects the production fluid from a couple of wellheads, transfers it to onshore or offshore storage platforms, and even accommodates water and gas injection flowlines. This paper presents the basic design procedure for a manifold frame structure with novel structural verification using in-house unity check codes. Loads and load cases for the design of an SIL 3 class-manifold are established from a survey of relevant industrial codes. The basic design of the manifold frame is developed based on simple load considerations such as the self weights of the manifold frame and pipeline system. In-house software with Eurocode 3 embedded, called INHA-SOLVER, makes it possible to carry out code checks on the yield and buckling unities. This paper finally proves that the new design of the manifold frame structure is effective to resist a permanent and environment load, and the in-house code is also adaptively combined with the commercial finite element code Nastran.

The technical analysis and study of decommissioning and abandonment of offshore oil field surface facilities and subsea system

  • Lu, Guihua;Li, Hongsheng;Xiao, Jianjun;Li, Zhihao;Xu, Minhang
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.289-303
    • /
    • 2016
  • With more than 100 years exploration and development of offshore oil, more and more offshore oil fields will gradually lose the economic profit to operate. In this article, to take the target oil field for example, the procedure of decommissioning for FPSO, TCMS, subsea system and well abandonment have been analyzed. Meanwhile, the environment impact and mitigation measure have been proposed. The successful project experience will provide a guide line for the offshore facilities decommissioning and abandonment.

Analysis of Influential Factors on Wax Deposition for Flow Assurance in Subsea Oil Production System (해저 석유생산시스템에서 유동안정성 확보를 위한 왁스집적 영향요소 분석 연구)

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.662-669
    • /
    • 2015
  • There has been an increased interest in the mitigation of wax deposition because wax, which usually accumulates in subsea oil-production systems, interrupts stable oil production and significantly increases the cost. To guarantee a required oil flow by mitigating wax deposition, we need to obtain a reliable estimation of the wax deposition. In this research, we perform simulations to understand the major mechanisms that lead to wax deposition, namely molecular diffusion, shear stripping reduction, and aging. While the model variables (shear reduction multiplier, wax porosity, wax thermal conductivity, and molecular diffusion multiplier) can be measured experimentally, they have high uncertainty. We perform an analysis of these variables and the amount of water and gas in the multiphase flow to determine these effects on the behavior of wax deposition. Based on the results obtained during this study for a higher wax porosity and molecular diffusion multiplier, we were able to confirm the presence of thicker wax deposits. As the shear reduction multiplier decreased, the thickness of the wax deposits increased. As the amount of water increased, there was also an increase in the amount of wax deposits until 40% water cut and decreased. As the amount of gas increased, the amount of wax deposits increased because of the loss of the light hydrocarbon component in the liquid phase. The results of this study can be utilized to estimate the wax deposition behavior by comparing the experiment (or field) and simulation data.