• Title/Summary/Keyword: Submerged structure

Search Result 330, Processing Time 0.025 seconds

Finite Element Modelling of a Submerged Cylindrical Structure Considering Fluid-Structure Interaction Effect and Dynamic Response Spectrum Analysis (유체-구조물 상호작용을 고려한 실린더형 수중 구조물의 유한요소모델링 및 동적 응답 스펙트럼 해석)

  • 이희남;신태명
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • 유체-구조물 상호작용 효과를 고려하여, 실린더형 수중 구조물의 유한요소 모델을 상용 전산코드를 사용하여 작성하고 동적하중에 대한 응답해석을 수행하였다. 구조 유한요소에 부착되는 유체 유한요소로 인하여 발생하는 요소행렬의 비대칭성으로 인하여, 일반적으로 사용되는 유한요소 해석 전산코드로 유체-구조물 상호작용 모델에 대한 응답스펙트럼해석을 수행하는 것은 불가능하다. 이 문제의 해결을 위하여, 등가 비 유체-구조물 상호작용 모델을 구성하고, 등가비 유체-구조물 상호작용 모델에 대한 응답스펙트럼 해석 및 조화가진 응답해석 결과를 이용하여 유체-구조물 상호작용 모델의 스펙트럼 가진에 대한 동적 응답을 계산할 수 있는 효율적인 방법을 제시하였다.

  • PDF

Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods

  • Haghighi, Mohammad Salkhordeh;Keikha, Reza;Heidari, Ali
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.361-367
    • /
    • 2018
  • In this paper, dynamic analysis of concrete pipe submerged in the fluid and conveying fluid is studied subjected to earthquake load. The structure is modeled by classical shell theory and the force induced by internal fluid is obtained by Navier-Stokes equation. Applying energy method and Hamilton's principle, the motion equations are derived. Based on Navier and Newmark methods, the dynamic deflection of the structure is calculated. The effects of different parameters such as mode number, thickness to radius ratios, length to radius ratios, internal and external fluid are discussed on the seismic response of the structure. The results show that considering internal and external fluid, the dynamic deflection increases.

Production of Sphingolipids by Submerged Culture of Ganoderma lucidum and Cutaneous Hydration Effect (Ganoderma lucidum 균사체의 액체배양의 의한 sphingolipids의 생산 및 피부 보습 효과)

  • Ryu, Il-Hwan;Kim, Jung-Enn;Lee, Kap-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.655-661
    • /
    • 2004
  • Sphingolipid production was investigated through Ganoderma lucidum-submerged cultivation. Crude sphingolipid obtained from G. lucidum was purified by methanol precipitation, Dowex AG DW-X8 (H+ form) cation exchange chromatography, and preparative thin layer chromatography, Structure and functionalities of purified sphingolipid were elucidated including cutaneous hydration effect. Possibility of use as cosmetics material and new biomaterial was explored. Production was 0.4 g/L at 1% yield. Purified sphingolipid was identified as D-ribo-1,3,4-trihydroxy-2-aminoocta decan through UV/VIS, FT-IR, and $^1H-NMR$. Sphingolipids increased skinmate value for cutaneous hydration effect by 20% at $500\;{\mu}g/mL$ and decreased skin roughness at $100\;{\mu}g/mL$. Results suggest shingolipids from G. lucidum are effective for cutaneous hydration and improvement of skin roughness.

Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater (불투과 잠제 전면에서 파랑 작용 하의 세굴 해석을 위한 수치모델의 개발)

  • Hur, Dong-Soo;Jeon, Ho-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.483-489
    • /
    • 2011
  • In this study, the coupled-numerical model has been newly developed to investigate numerically scouring and deposition around a coastal structure like a submerged breakwater using a numerical wave model and a lagrangian particle model for sand transport. As a numerical wave model, LES-WASS-2D (Hur and Choi, 2008) is adopted. The model is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance term and determine the eddy viscosity with LES turbulence model. Distinct element method (Cundall and Strack, 1979), which is able to apply to many dynamical analysis of particulate media, as a lagrangian particle model for sand transport is newly coupled to the numerical wave model. The numerical simulation has been carried out to examine the scour problem in front of an impermeable submerged breakwater using the newly coupled-numerical model. The numerical results has been compared qualitatively with an existing experimental data and then its applicability has been discussed.

A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition (인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구)

  • Park, Sang-Soon;Jeong, Ji-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • Steel reinforcement buried in concrete structure in submerged zone does not easily become corroded due to lack of dissolved oxygen. For that reason, accelerated corrosion test in submerged state is performed with an electrochemical method, which is not suitable for actual corrosion mechanism and makes it difficult to find relevance with long-term behavior. In this study, accelerated corrosion test was performed with the temperature and chloride concentration as main variables in order to establish a method for accelerated corrosion test in submerged zone. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. The accelerated corrosion test result showed that temperature had the most dominant influence. To determine the chloride content, chloride concentration by depth in the test sample was measured. With the same conditions, chloride penetration interpretation was performed by DuCOM, a FEM durability interpretation program. Also, a test was performed to measure dissolved oxygen according to soaking conditions of artificial seawater, which was used for verifying the validity of the accelerated corrosion test result.

Study on Surface Vortices in Pump Sump

  • Long, Ngo Ich;Shin, Byeong Rog;Doh, Deog-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.60-66
    • /
    • 2012
  • One of commonly physical phenomena encountered in pump sump systems in which its significant influence to the hydraulic performance of pump system plays an important role in the field of fluid engineering, is the appearance of free surface and submerged vortices. In this paper, a study of the vortices behavior and their formative mechanism of asymmetry is considered in this paper by using numerical approach. The Reynolds-Averaged Navier-Stokes (RANS) equations and k-omega Shear Stress Transport turbulence model used to describe the properties of turbulent flows, in company with VOF multiphase model, are implemented by Fluent code with multi-block structured grid system. In the numerical simulation, the calculated elevation of air-water interface and vortex core contours are used to classify visually surface vortices as well as submerged vortices. It is shown that the free surface vortex is identified by the concavity of liquid region from the free surface and swirling flow at that own plane. To investigate the distinctive behavior of these vortices corresponding to each given flow rate at the same water level, some numerical testing of them are considered here in such a manner that the flow pattern of surface vortex are obtained similarly to the obtained results from experiment. Furthermore, the influence due to the change of grid refinement and the variation of depth of the concavity are also considered in this paper. From that, these influential factors will be implemented to design a good pump sump with higher performance in the future.

Analysis of Wave Transformation and Velocity Fields Including Wave Breaking due to the Permeable Submerged Breakwaters (수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석)

  • 김도삼;이광호;김정수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2002
  • Among various numerical methods of wave transformations including wave breaking by structure, models using VOF(Volume Of Fluid) method to trace free surface are getting into the spotlight recently. In order to analyze wave transformations and velocity of the wave fields due to the permeable submerged breakwater(PSB), This study applied VOF method to the two-dimensional wave channel installed line-source to generate waves and added dissipation zone to offer a non-reflective boundary. Hydraulic experiments was performed to obtain the application of two-dimensional numerical wave channel. The results of numerical experiments using the two-dimensional wave channel agree well with the experimental data. It was shown that vortices are formed behind the PSB, and in case of the 2-rowed PSB they also are occurred in between PSBs, strongly non-linear waves are developed on the crown of the PSB, and the direction of velocities in porous media is determined by the shape of free surface.

The Study of Wave and Current due to Submerged Structure (잠제인근에서의 파랑변형 실험 연구)

  • 김효섭;정병순;윤석준
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.294-297
    • /
    • 2003
  • 해양에 존재하는 인공 구조물들은 주로 해수의 흐름(파랑 및 연안류)에 의해 발생하는 현상들을 조절하기 위하여 설치된다. 그 중에서 수중에 위치하여 해수의 흐름과 파의 에너지를 조절하는 잠제의 경우는 미관상으로 수중에 잠겨있어 조망권 확보가 가능하며, 표사이동을 차단하는 수중보 역할, 어초보호 기능의 수행 등 그 기능면에서 매우 실용적인 구조물이라 할 수 있다. (중략)

  • PDF

Modal Analysis In The Dynamic Behavior Identification of the fluid-structure coupled Vertical Pump (유체와 구조물이 조합된 대형 수직펌프의 동특성 개선)

  • 배춘희;조철환;김성휘;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • The paper presents the possibilities of a wide practical application of the modal analysis methods in dynamic testing of vertical pump. A pneumatic impact of testing vertical pumps submerged under deep water was developed and successfully applied. The problem with the enviroment is the it causes significants changes in modal parameters, compared with those in the airenviroment.

  • PDF

Free Vibration Analysis of Perforated Shell Submerged in Fluid (유체에 잠긴 다공 원통형 쉘의 자유진동해석)

  • Jhung Myung-Jo;Jo Jong-Chull
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.247-258
    • /
    • 2006
  • For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with equivalent material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.