• Title/Summary/Keyword: Subharmonic

Search Result 84, Processing Time 0.017 seconds

Flow Characteristics of Acoustically Excited Axisymmetric Impinging Jet (음향여기된 축대칭 충돌제트의 유동 특성)

  • 조형희;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.32-40
    • /
    • 1997
  • The velocity and turbulent intensity of the jet core are affected by the vortices around jet. By the control of vortex acoustically, we can expect the changes of the flow and heat transfer characteristics of free and impinging jets. On this paper, we studied the effects of vortex forcing. If vortex pairings are promoted by acoustic excitation, the turbulent intensity is increased and the high heat transfer coefficients are obtained at the small nozzle to plate distance. On the other hand, it has low turbulent intensity at the center of jet. However due to increase of potential core length, it is more effective at the large nozzle to plate distance. Therefore the excited frequency, especially its subharmonic frequency, has an important role to control the jet flows.

  • PDF

Effect of Two-Frequency Forcing on Flow Behind a Backward-Facing Step (이중주파수 가진이 후향계단 유동에 미치는 영향)

  • Yu, Jeong-Yeol;Jin, Song-Wan;Kim, Seong-Uk;Choe, Hae-Cheon;Kim, Sa-Ryang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.423-431
    • /
    • 2002
  • An experimental study is conducted to investigate the effect of two-frequency forcing on turbulent flow behind a backward-facing step at the Reynolds number of 27000 based on the step height. The forcing is provided from a thin slit located at the edge of the backward-facing step to increase mixing behind the backward-facing step and consequently to reduce the reattachment length. With single frequency forcing, the minimum reattachment length is obtained at the non-dimensional forcing frequency (F) of St$\_$h/ = 0.29. With two-frequency forcing, a subharmonic frequency (F/2) or biharmonic frequency (2F) is combined with the fundamental frequency (F), i.e. (F, F/2) or (F, 2F) forcing is applied. In the case of (F, F/2) forcing, the reattachment length is not much sensitive to the phase difference between F and F/2. However, the reattachment length significantly depends on the phase difference between F and 2F in the case of (F, 2F) forcing. At a certain range of the phase difference, the reattachment length becomes smaller than that of the single frequency forcing.

Frequency analysis of the tonic vibration reflex of the hand flexor muscles

  • 박희석
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.49-51
    • /
    • 1994
  • The aims of this study were first to determine the influence of vibration displacement amplitude $(200{\mu}m, 300{\mu}m peak-to-peak)$ at selected frequencies (40-200Hz) on a commonly observed but often undesired motor response elicited bylocal vibratory stimulation, the Tonic Vibration Reflex (TVR). Second, to determine the degree of synchronization of motor unit (MU) activity with vibratory stimuli. Vibration was applied to the distal tendons of the hand flexor muscles. Changes in root- mean-square electromyographic (EMG) activity of the finger and wrist flexor muscles were analyzed both as a function of their initial contraction level (0%, 10%, 20% of the maximal voluntarycontraction: MVC) and as a function of the vibration parameters. The results indicate that the TVR increased with the initial muscle contraction up to 10% MVC: The TVR increased with vibration frequency up to 100-150 Hz and decreases beyond; A significant increase of the TVR with vibration displacement amplitude was observed only for the wrist flexor muscle; MU synchronization at vibration frequency (VF) was found more often in the low frequency range $(f{\leq}100 Hz)$ and tended todecrease beyond; In the high frequency range $(f{\geq}120 Hz)$, MU activity at subharmonic frequency was predominant; The "cut-off" frequency of the synchronization with VF was neither affected by the vibration displacement amplitude nor initial muscle contraction level. The surface EMG turned out to be a useful means to analyze MU synchronization since it is noninvasive, and it can be easily used for analysis of different muscle contraction levels, while single MU technique might have some difficulties at high muscle contraction levels. Furthermore, these results indicate that high frequencyvibration (f>150 Hz) tends to induce less muscle/tendon stress and MU synchronization. Such remarks are of importance for the design of hand-held vibrating tools.ing tools.

  • PDF

H-Band(220~325 GHz) Transmitter and Receiver for an 1.485 Gbit/s Video Signal Transmission (H-대역(220~325 GHz) 주파수를 이용한 1.485 Gbps 비디오 신호 전송 송수신기)

  • Chung, Tae-Jin;Lee, Won-Hui
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.345-353
    • /
    • 2011
  • An 1.485 Gbit/s video signal transmission system using the carrier frequency of H-band(220~325 GHz) was implemented and demonstrated for the first in domestic. The RF front-end was composed of Schottky barrier diode sub-harmonic mixers(SHM) and frequency triplers, and diagonal horn antennas for transmitter and receiver, respectively. The transmitted carrier frequency of 246 GHz was implemented in the H-band, and LO frequencies of H-band SHM is 120 GHz and 126 GHz for transmit and receive chains, respectively. The modulation scheme is ASK(Amplitude Shift Keying) where IF frequency is 5.94 GHz and the envelop detection was used in heterodyne receiver architecture, and direct detection receiver using ZBD(Zero Bias Detector) was implemented as well. The 1.485 Gbit/s video signal with HD-SDI format was successfully transmitted over wireless link distance of 5 m and displayed on HDTV at the transmitted average output power of 20 ${\mu}W$.