• Title/Summary/Keyword: Subcritical Water

Search Result 84, Processing Time 0.023 seconds

Self-forming dynamic membrane formed on mesh filter coupled with membrane bioreactor at different sludge concentrations

  • Rezvani, Fariba;Mehrnia, Mohammad Reza
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • This study attempted to evaluate the process of self-forming dynamic membrane formation on mesh filter in membrane bioreactor with a two-stage method of batch (agitation) and continues (aeration) stage at different sludge concentrations. Four concentrations of activated sludge including $6{\pm}0.4$, $8{\pm}0.5$, $10{\pm}0.3$, $14{\pm}0.3g/L$ were used to demonstrate the optimal concentration of sludge for treating municipal wastewater and reducing fouling in dynamic membrane bioreactor. The formation time and effluent turbidity were decreased in the batch stage when increasing the activated sludge concentration. The minimum values of formation time and effluent turbidity were 14 min and 43 NTU for the optimum mixed liqueur suspended solids of $8{\pm}0.5g/L$, respectively. To improve operational condition and fouling reduction in the aeration stage, critical fluxes were measured for all concentrations by flux-step method. With increasing the sludge concentration, the relevant critical fluxes reduced. The optimum subcritical flux of $30L/m^2/h$ was applied as operating flux in the second stage. The maximum COD removal efficiency of 98% was achieved by the concentration of $8{\pm}0.5g/L$. Compressibility index of self-forming dynamic membrane and transmembrane pressure trend remained somewhat constant until the optimal concentration of $8{\pm}0.5g/L$ and thereafter they increased steeply.

The Hydraulic Assessment of Side Weir using 3D Computational Fluid Dynamics Program (3차원 수치모형에 의한 횡월류위어의 수리학적 평가)

  • Nam, Ki-Young;Han, Kun-Yeun;Park, Hong-Sung;Kim, Keuk-Soo;Choi, Seung-Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.153-168
    • /
    • 2010
  • The objectives of this study are to analyze flow characteristics for a side weir, which is an inlet structure for flow discharge reduction in the main channel through 3 dimensional numerical analysis and to understand the efficiency of the overflow effect at the side weir. In this study over 40 simulations using FLOW-3D, a computational fluid dynamics program were conducted, and the results were analyzed to find the influence of the flow hydraulics, geometry, channel and weir shapes on the coefficient. It is especially considered the relatively high stage in downstream that may cause flow within channel to be backed up along the channel. Additionally by setting up the scale of simulations much larger than the existing test equipment designed by other researchers, it is intended to analyze more accurate hydraulic behavior along with the realistic hydraulic features such as structures and volumes of flow. The results show that for design with subcritical flow only if the Froude number of upstream is sustained below 0.5 and the length of weir is 33-100% of the width of channel, it is expected to improve the efficiency of the overflow over a side weir.

Characterization of Degradation features and Degradative Products of Poplar Wood(Populus alba${\times}$glandulosa) by Flow Type-Supercritical Water Treatment (초임계수에 의한 현사시 목분의 분해특성 및 분해산물 분석)

  • Choi Joon-Weon;Lim Hyun-Jin;Han Kyu Sung;Kang Ha-Young;Choi Don-Ha
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • In this study, the possibility of sugar conversion of poplar wood(Populus $alba{\times}rglandulosa$) and their degradation features of major wood components were characterized using flow type supercritical water treatment system. The finely ground poplar wood meals were treated for 2min. under subcritical condition$(23MPa,\;275^{\circ}C\;and\;325^{\circ}C)$ and supercritical condition $(23MPa,\;375^{\circ}C\;and\;415^{\circ}C)$. respectively. The degradation products of poplar wood meals appeared brownish colors, including undegraded solids. Increasing the temperature of the system, the degradation rate of poplar wood meals was accelerated and reached up to $94\%\;at\;375^{\circ}C$. The total amount of reducing sugars in degradation products determined by DNS method were gradually lowered when the temperature condition became severe. This indicated that the reducing sugars formed were further degraded to kan derivatives by certain side reaction such as pyrolysis under higher temperature. In order to characterize degradation features of lignin, the degradation products were extracted with ethylacetate and the organic phases were subjected to GC-MS analysis. Main lignin degradation products were identified to vanillin, guaiacol, syrinaldehyde, 4-prophenyl syringol and dihydrosinapyl alcohol, which could be formed by the cleavage of ether linkages in lignin polymers by high temperature condition.

  • PDF

Optimization of TDA Recycling Process for TDI Residue using Near-critical Hydrolysis Process (근임계수 가수분해 공정을 이용한 TDI 공정 폐기물로부터 TDA 회수 공정 최적화)

  • Han, Joo Hee;Han, Kee Do;Jeong, Chang Mo;Do, Seung Hoe;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.650-658
    • /
    • 2006
  • The recycling of TDA from solid waste of TDI plant(TDI-R) by near-critical hydrolysis reaction had been studied by means of a statistical design of experiment. The main and interaction effects of process variables had been defined from the experiments in a batch reactor and the correlation equation with process variables for TDA yield had been obtained from the experiments in a continuous pilot plant. It was confirmed that the effects of reaction temperature, catalyst type and concentration, and the weight ratio of water to TDI-R(WR) on TDA yield were significant. TDA yield decreased with increases in reaction temperature and catalyst concentration, and increased with an increase in WR. As a catalyst, NaOH was more effective than $Na_2CO_3$ for TDA yield. The interaction effects between catalyst concentration and temperature, WR and temperature, catalyst type and reaction time on TDA yield had been defined as significant. Although the effect of catalyst concentration on TDA yield at $300^{\circ}C$ as subcritical water was insignificant, the TDA yield decreased with increasing catalyst concentration at $400^{\circ}C$ as supercritical water. On the other hand, the yield increased with an increase in WR at $300^{\circ}C$ but showed negligible effect with WR at $400^{\circ}C$. The optimization of process variables for TDA yield has been explored with a pilot plant for scale-up. The catalyst concentration and WR were selected as process variables with respect to economic feasibility and efficiency. The effects of process variables on TDA yield had been explored by means of central composite design. The TDA yield increased with an increase in catalyst concentration. It showed maximum value at below 2.5 of WR and then decreased with an increase in WR. However, the ratio at which the TDA yield showed a maximum value increased with increasing catalyst concentration. The correlation equation of a quadratic model with catalyst concentration and WR had been obtained by the regression analysis of experimental results in a pilot plant.