• Title/Summary/Keyword: Subcooling

Search Result 220, Processing Time 0.027 seconds

Experimental Investigation of Flow Oscillations in a Semi-closed Two-phase Natural Circulation Loop (준밀폐형 2상자연순환 회로 내에서의 유동 진동에 관한 실험적 연구)

  • Kim, Jong Moon;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1763-1773
    • /
    • 1998
  • In the present experimental study, the flow behavior in a semi-closed two-phase natural circulation loop was examined. Water was used as the working fluid. Heat flux, heater-inlet subcooling, and flow restrictions at the heater-inlet and at the expansion-tank-line were taken as the controlling parameters Six circulation modes were identified by changing heat flux and inlet subcooling conditions ; single-phase continuous circulation, periodic circulation (A), two-phase continuous circulation, and periodic circulations (B), (C), and (D). Among these, the single-phase and two-phase continuous-circulation modes exhibit no significant oscillations and are considered to be stable. Periodic circulation (A) is characterized by the large amplitude two-phase f10w oscillations with the temporal single-phase circulation between them, while periodic circulation (B) featured by the flow oscillations with continuous boiling inside the heater section. Periodic circulation (C) appears to be the manometric oscillation with continuous boiling. Periodic circulation (D) has the longer period than periodic circulation (B) and a substantial amount of liquid flow back and forth through the expansion-tank-line periodically ; this mode is considered the pressure drop oscillation. Parametric study shows that the increases of the inlet- and expansion-tank-line- restrictions and the decrease of inlet subcooling broaden the range of the stable two-phase(continuous circulation) mode.

An experimental study on the effect of parameters for onset of nucleate boiling in concentric annuli flows (이중 동심관 유동에서 핵비등 시발점의 영향인자에 대한 실험적 연구)

  • Song, J.H.;Kim, K.C.;Lee, S.H.;Park, J.H.;Suk, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.373-378
    • /
    • 2000
  • An experimental investigation on the incipience of nucleate boiling in forced flow of water is performed as a verification and extension of previous analysis. The effects of the subcooling, Reynolds number and surface curvature on the onset of nucleate boiling(ONB) in a concentric annulus flow channel with smooth inner heating surface is investigated experimentaly. Through flow visualization, the boiling phenomenon was observed directly and the experimental results were examined to find ONB heat flux. The results show that the variation of heat flux at ONB is increased linearly as the Reynolds number and subcooling are increased. The effect of surface curvature is very great specially for a small radius when radius of the inner heating tube is increased, the heat flux at ONB is almost inversely increased for the range of this investigation. It is found that the effect of convex surface curvature on ONB heat flux is very significant for a small radius.

  • PDF

Experimental Investigation on the Enhancement of Methane Hydrate Formation in the Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 메탄 하이드레이트 충진율 증대에 대한 실험적 연구)

  • 김남진;정재성;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.863-870
    • /
    • 2002
  • Fossil fuels have been depleted gradually and new energy resource which can solve this shortage is needed now. Methane hydrate, non-polluting new energy resource, satisfies this requirement and considered the precious resource prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely, so developing the techniques that can use these gases effectively is fully valuable. the work presented here is to develop the skill which can transport and store methane hydrate. As a first step, the equilibrium point experiment has been carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to find out kinetic characteristics of the hydrate. The results of present investigation show that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, stirring rate, and water injection.

A Study on Boiling Heat Transfer in a Impinging Subcooled Water Jet System (충돌과냉수분류(衝突過冷水噴流)의 비등열전달(沸騰熱傳達)에 관한 연구(硏究))

  • Lee, G.J.;Lee, J.S.;Ohm, K.C.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 1993
  • This paper describes the boiling heat transfer phenomena to be divided into three regions, nonboiling, nucleate boiling and burn-out in the impinging subcooled water jet system. In the nonboiling region, Nusselt number is a function of Prandtl number, Reynolds number and ${\Delta}T_{sub}/T_{ast}$ In the nucleate boiling region, the heat flux increases with increment of the nozzle exit velocity. But the degree of liquid subcooling does not affect the shape of the nucleate boilng curve. The dimensionless correlations can be expressed in the form of $q{\ell}/K_f{\Delta}T_{ast}=C(Bo{\cdot}C_p{\cdot}{\Delta}T_{sat}/Vo^2)^m{\cdot}(Re/We)^n$. The burn-out heat flux increases linearly with increment of the nozzle exit velocity, but independs of degree of subcooling and the supplementary water height.

  • PDF

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes (열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수)

  • 김경기;서강태;채순남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

An Analysis of Critical Heat Flux on the External Surface of the Reactor Vessel Lower Head

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.190-190
    • /
    • 1999
  • CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions.

  • PDF

Study on Correlation of Critical Heat Flux in Spray Cooling (분무냉각에 있어서 임계열유속 상관식에 관한 연구)

  • Kim, Yeung Chan
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.109-113
    • /
    • 2018
  • The critical heat flux of spray cooling were measured on the test surface of 10 mm diameter made by stainless steel. The experiments were carried out for the droplet-flow-rate of $0.00002{\sim}0.003m^3/(m^2s)$ and liquid subcooling temperature of $40{\sim}75^{\circ}C$. Experimental results showed that the critical heat flux of spray cooling increased remarkably with the increase of droplet-flow-rate. Meanwhile, the effect of liquid subcooling on critical heat flux of spray cooling appeared weakly under the present experimental conditions. In additions, correlation between the dimensionless critical heat flux and Weber number based on droplet-floe-rate was developed for experimental results.

Experimental Study on Minimum Heat Flux Point of Liquid Film Flow (액막류의 MHF 점에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.208-213
    • /
    • 2001
  • The minimum heat flux conditions are experimentally investigated for the subcooled liquid film flow on the horizontal plate. The experimental results show that the minimum heat flux point temperature becomes higher with the increase of the velocity and the subcooling of the liquid film flow. However, the effect of distance from the leading edge of the heat transfer plate on the minimum heat flux is almost negligible. Also, the experimental results show that the propagation velocity of wetting front increase with increasing the velocity and the subcooling of the liquid film flow.

  • PDF