• 제목/요약/키워드: Subchannel(부수로)

검색결과 36건 처리시간 0.026초

핵 연료집합체 부수로 해석을 위한 횡 방향 압력손실계수의 수치적 결정 (Numerical Determination of Lateral Loss Coefficients for Subchannel Analysis in Nuclear Fuel Bundles)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.491-502
    • /
    • 1995
  • 핵연료집합체 부수로 유동장에 대한 상세한 정보에 기초해 교차류를 정확히 예측하는 것은 핵연료의 성능을 해석하는데 중요한 요소이다. 본 연구에서는 저-Reynolds 수 k-$\varepsilon$ 난류모형을 채택하여 인접한 두 부수로 사이에 발생하는 교차류를 해석하였다 또한, 2차유동을 정확히 모사하기 위해서 비등방성 대수응력모형을 사용하였다. 이상의 난류 모형은 유한요소법을 통해 해석되었으며 가용한 실험자료와 비교하여 검증하였다. 그리고, 부수로 유동장에 대한 수치해석 결과를 이용하여 횡방향 합력손실계수의 상관식을 구성하였다. 상관식은 교차류를 제공하는 부수로의 축방향 속도에 대한 교차류의 속도비, 제공받는 부수로의 Reynolds 수 그리고 Pitch-to-diameter의 함수로 구성되었다.

  • PDF

비선형 k-$\varepsilon$ 난류모델에 의한 봉다발의 삼각형 부수로내 난류유동 수치해석 (Simulation of Turbulent Flow in a Triangular Subchannel of a Bare Rod Bundle with Nonlinear k-$\varepsilon$ Models)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.8-15
    • /
    • 2003
  • Three nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a triangular subchannel of a bare rod bundle. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and wall shear stress are compared in details both qualitatively and quantitatively with both each other and experimental data. The nonlinear κ-ε models by Speziale[1] and Myong and Kasagi[2] are found to be capable of predicting accurately noncircular duct flows involving turbulence-driven secondary motion. The nonlinear κ-ε model by Shih et aL.[3] adopted in a commercial code is found to be unable to predict accurately noncircular flows with the prediction level of secondary flows one order less than that of the experiment.

핵연료봉 주위에 형성되는 난류유동장에서 부수로 압력손실에 대한 해석적 연구 (Analytical study on the Subchannel Pressure Loss for Turbulent Flow in Bare Rod Bundles)

  • 이계복;;벽면마찰속도
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2630-2636
    • /
    • 1995
  • A theoretically based prediction for the determination of the subchannel friction factor at low pitch to the rod diameter ratio (P/D < 1.2) in the bare rod bundle flow has been developed. The present model assumes the validity of the Law of Wall over the entire flow area. The algebraic form of the Law of the Wall is integrated over the entire flow area and the local friction velocity variation along the rod periphery is considered in this study. The present method is applied to the rod bundles with P/D < 1.2, and the prediction results show good agreement with the available experimental data.

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

CUPID 코드를 활용한 2×2 봉다발 부수로 유동 해석 (ASSESSMENT OF THE CUPIDCODE APPLICABILITY TO SUBCHANNEL FLOW IN 2×2 ROD BUNDLE)

  • 이재룡;박익규;김정우
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.71-77
    • /
    • 2016
  • The CUPID code is a transient, three-dimensional, two-fluid, thermal-hydraulic code designed for a component-scale analysis of nuclear reactor components. The primary objective of this study is to assess the applicability of CUPID to single-phase turbulent flow analyses of $2{\times}2$ rod bundle subchannel. The bulk velocity at the inlet varies from 1.0 m/s up to 2.0 m/s which is equivalent to the fully turbulent flow with the range of Re=12,500 to 25,000. Adiabatic single-phase flow is assumed. The velocity profile at the exit region is quantitatively compared with both experimental measurement and commercial CFD tool. Three different boundary conditions are simulated and quantitatively compared each other. The calculation results of CUPID code shows a good agreement with the experimental data. It is concluded that the CUPID code has capability to reproduce the turbulent flow behavior for the $2{\times}2$ rod bundle geometry.

소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발 (Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle)

  • 어동진;장석규;배황;김석;김형모;최해섭;최선락;이형연
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.