• Title/Summary/Keyword: Subassembly process

Search Result 27, Processing Time 0.025 seconds

Evaluation of the Product Complexity Considering the Disassemblability (제품의 분리 공정의 특성을 고려한 제품의 복잡도 평가)

  • Mok, Hak-Soo;Kim, Sung-Ho;Yang, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.14-24
    • /
    • 1999
  • In this study, the product complexity is evaluated quantitatively considering the disassembly process of the product. To evaluate complexity of the product, we analyze the characteristics of the product and the disassembly process. And we determine factors, which influence on the complexity of the product in the main-disassembly and sub-disassembly. Considering each characteristics of part and subassembly. Evaluations criteria of complexity are determined. Using evaluation criteria of the complexity can be determined the complexity grade of the product, and then we show the total complexity of the product considering the disassembly process.

  • PDF

Scheduling of Welding Robots for Shipyard Sub-assembly Process (조선 소조립 공정의 자동화를 위한 용접 로봇 스케줄링)

  • Kang, Jang-Ha;Park, Sung-Soo;Park, Kyung-Chul;Do, Ki-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.21-34
    • /
    • 1999
  • We consider a scheduling problem arising in a shipyard subassembly welding process. There are four welding robots of gantry type, which perform the welding process for the subassemblies. Because the robots perform the welding operations at the same time, there is a possibility of collision between adjacent robots depending on the welding schedule. In this paper, we propose a heuristic method to find a welding schedule which does minimize the welding completion time while avoiding collision among the robots. The method consists of two phases: assignment and scheduling. In the assignment phase, we assign each welding line to a proper robot. In the scheduling phase, we determine the welding schedules for the robots so that collision is avoided. Computational experiences with the data which reflect the real situation are reported.

  • PDF

Effect of the Change of welding torch and piece arrangement by the 3-dimensional robot welding simulation (3차원 로봇용접 시뮬레이션에 의한 용접토치 및 부재배치의 변경에 따른 영향 평가)

  • 강현진;박주용;박현철;차태인;최동환
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • This simulation was carried out to estimate the process time and to improve the operation efficiency. The subassembly process consists of piece arrangement, tack welding, robot welding, manual welding and the robot welding of them was the focus of the simulation. Robot welding stage was analyzed by UML and IDEFø method, and then it was represented as the three-dimensional model(simulator) based on the analysis. The output of this simulation was the cycle time for one day's work. The cycle time for the different torch and the different piece arrangement was investigated by the 3-dimensional simulation.

  • PDF

Determination of Fixture Locations and Welding Points Using Tolerance Analysis of Compliant Assembly (변형 조립체 공차해석 기법을 이용한 판재 용접용 치구 및 응접 점의 위치결정)

  • Lee, Dong-Yul;So, Hyun-Chul;Yim, Hyun-June;Jee, Hae-Seong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.263-273
    • /
    • 2007
  • All manufactured parts and tooling have unavoidable variations from their nominal shapes. During assembly, compliant parts are further deformed by relatively rigid assembly tooling. Lack of Knowledge regarding variations and deformations often results in expensive problems. Most current computer-aided design systems are based on ideally sized, ideally located and rigid geometry. This paper proposes a model for the assembly of compliant, non-ideal part. We start by defining tolerance analysis as the process of simulation the variation of a product or a subassembly when given the tolerance of required parts. Analysis is then done by finite element analysis and using the material properties of the actual parts to be assembled. Using the result, estimate the weld process.

Assemblability and disassemblability of mechanical parts in automobile (자동차 부품의 조립 용이성과 분리 용이성)

  • Mok, Hak-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • In this paper, systematic approach is studied about assemblability and disassemblability of parts in order to reduce the assembly cost, and to disassemble products easily which is possible to recycle the parts. For this purpose, we selected one subassembly, and analysed assembly and disassembly process. From this result, we found the weakpoints of assembly and disassembly process, and then, the influencing parameters of assemblability and disassemblability are defined. On the basis of the analysis of these parameters we grasped the interrelation between assemblability and disassemblability. And, guidelines for assemblability and disassemblability are developed. Finally design alternatives are evaluated quantitatively in the aspects of assembly and disassembly by using the guidelines which developed in this research.

  • PDF

Position estimation of welding panels for sub-assembly welding line in shipbuilding using camera vision system (조선 소조립 용접자동화의 부재위치 인식을 위한 camera vision system)

  • 전바롬;윤재웅;고국원;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.361-364
    • /
    • 1997
  • There has been requested to automate the welding process in shipyard due to its dependence on skilled operators and the inferior working environments. According to these demands, multiple robot welding system for sub-assembly welding line has been developed, realized and installed at Keoje Shipyard. In order to realize automatic welding system, robots have to be equipped with the sensing system to recognize the position of the welding panels. In this research, a camera vision system is developed to detect the position of base panels for subassembly line in shipbuilding. Two camera vision systems are used in two different stages (Mounting and Welding) to automate the recognition and positioning of welding lines. For automatic recognition of panel position, various image processing algorithms are proposed in this paper.

  • PDF

Design Principle for Disassemblability of Products (제품의 분리용이성을 위한 설계원칙)

  • Mok, Hak-Soo;Han, Chang-Hyo;Jeon, Chang-Su;Song, Min-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.48-57
    • /
    • 2008
  • This paper shows the procedure to decide an optimal design principle for improving the disassemblability with considering of disassembly conditions. On the bssis of the disassembly mechanism of products and the structure of parts and subassembly, the disassemblability is classified into four categories: graspability, accessibility, transmission of disassembly power and handling. The weighting values of the influential factors are calculated by the method of AHP(Analytic Hierarchy Process). The disassemblability is evaluated quantitatively. We established some score tables for the evaluation. Using these score tables, several principles for higher disassemblability in accordance with work conditions can be decided. An optimal design principle can be found by the comparison with the total scores of some disassembly conditions.