• Title/Summary/Keyword: Subassembly process

Search Result 27, Processing Time 0.026 seconds

Evaluation of Ease of Exchange of Subassembly Considering Module (모듈을 고려한 조립군의 교체성 평가)

  • 목학수;양태일;곽동영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.170-180
    • /
    • 2000
  • In this paper, to evaluate ease of exchange of subassembly considering module, it needs to analyze structure and function of subassembly, assembly and disassembly process. Exchange process of module can be divided into pre-process and in-process, and determination factors of exchange process are defined by analyzing characteristics of assembly and disassembly process. Based on the analysis of characteristics for structure and function of subassembly, influential factors of module can be proposed. Considered the interrelationship between determination factors of ease of exchange and influencing factors of module, ease of exchange can be evaluated.

  • PDF

The Complexity Evaluation System of Automobile Subassembly for Recycling (자원 재활용을 위한 자동차 조립군의 복잡도 평가시스템)

  • Mok, Hak-Soo;Moon, Kwang-Sup;Kim, Sung-Ho;Moon, Dae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.132-144
    • /
    • 1999
  • In this study, the complexity of the product was evaluated quantitatively considering the product structure, assembly process and disassembly process. To evaluate the complexity of the product, subassemblies of automobile were analyzed and then characteristics of part and subassembly were determined according to product structure, assembly process and disassembly process. Evaluation criteria of complexity were determined considering each characteristics of part and subassembly. Experiential evaluation was accomplished by classified evaluation criteria and time-motion evaluation was accomplished by the relational motion factor with characteristics of part and subassembly in MTM(Methods Time Measurement) and WF(Work Factor). The total complexity of product was determined by experiential evaluation and time-motion evaluation.

  • PDF

Digital Manufacturing based Modeling and Simulation of Production Process in Subassembly Lines at a Shipyard (디지털 생산을 기반으로 한 조선 소조립 공정 모델링 및 시뮬레이션)

  • 이광국;신종계;우종훈;최양렬;이장현;김세환
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.185-192
    • /
    • 2003
  • Digital Manufacturing-based production could be very effective in shipbuilding in order to save costs and time, to increase safety for workers, and to prevent bottleneck processes in advance. Digital shipbuilding system, a simulation-based production tool, is being developed to achieve such aspects in Korea. To simulate material flow in a subassembly line at a shipyard, the product, process and resources was modeled for the subassembly process which consisted of several sub-processes such as tack welding, piece alignment, tack welding, and robot welding processes. The analysis and modeling were carried out by using the UML(Unified Modeling Language), an object-oriented modeling method as well as IDEF(Integration DEFinition), a functional modeling tool. Initially, the characteristics of the shop resources were analyzed using the shipyard data, and the layout of the subassembly line was designed with the resources. The production process modeling of the subassembly lines was performed using the discrete event simulation method. Using the constructed resource and process model, the productivity and efficiency of the line were investigated. The number of workers and the variations In the resource performance such as that of a new welding robot were examined to simulate the changes in productivity. The bottleneck process floated according to the performance of the new resources. The proposed model was viewed three-dimensionally in a digital environment so that interferences among objects and space allocations for the resources could be easily investigated

  • PDF

Implementation of Automatic Teaching System for Subassembly Process in Shipbuilding (선박 소조립 공정용 로봇 자동교시 시스템의 구현)

  • 김정호;유중돈;김진오;신정식;김성권
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.96-105
    • /
    • 1996
  • Robot systems are widely utilized in the shipbuilding industry to enhance the productivity by automating the welding process. In order to increase productivity, it is necessary to reduce the time used for robot teaching. In this work, the automatic teaching system is developed for the subassembly process in the shipbuilding industry. A alser/vision sensor is designed to detect the weld seam and the image of the fillet joint is processed using the arm method. Positions of weld seams defined in the CAD database are transformed into the robot coordinate, and the dynamic programming technique is applied to find the sub-optimum weld path. Experiments are carried out to verify the system performance. The results show that the proposed automatic teaching system performs successfully and can be applied to the robot system in the subassembly process.

  • PDF

Optimization of Robot Welding Process of Subassembly Using Genetic Algorithm in the Shipbuilding (유전자 알고리즘을 이용한 조선 소조립 로봇용접공정의 최적화)

  • Park, Ju-Yong;Seo, Jeong-Jin;Kang, Hyun-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.57-62
    • /
    • 2009
  • This research was carried out to improve the productivity in the subassembly process of shipbuilding through optimal work planning for the shortest work time. The work time consist of welding time, moving time of gantry, teaching time of robot and robot motion time. The shortest work time is accomplished by even distribution of work and the shortest welding sequence. Even distribution of work was done by appling the simple algorithm. The shortest work sequence was determined by using GA. The optimal work planning decreased the total work time of the subassembly process by 4.1%. The result showed the effectiveness of the suggested simple algorithm for even distribution of work and GA for the shortest welding sequence.

Digital Manufacturing Based Productivity Evaluation According to the Change of Welding Robot Torches in Subassembly Lines of a Shipyard (조선 소조립 용접로봇토치 변경에 따른 디지털 생산 기반 생산성 향상방안 평가)

  • Lee K.K.;Kang H.J.;Kim S.H.;Park J.Y.;Shin J.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.210-216
    • /
    • 2005
  • Digital manufacturing could be very effective in shipbuilding in order to estimate the process time, to improve the operation efficiency, and to prevent bottleneck processes in advance. The subassembly process having done research consists of piece arrangement, tack welding, robot welding, manual welding and so on. The robot welding of them was the focus of the simulation. The analysis and modeling were carried out by using UML (Unified Modeling Language) as well as $IDEF\phi$ (Integration DEFinition). The characteristics of the process resources were analyzed using the shipyard data, and the layout of the subassembly line was designed with the resources. Using the constructed resource and process model, the productivity and efficiency of changed robot welding stage were investigated. It was simulated how much the variations in the resource performance have influence on improvement of productivity. One of the important outputs in this simulation was the cycle time during a certain period's work. The cycle time prediction was also undertaken for the different torch and the different piece arrangement. The proposed model was established three-dimensionally in a digital environment so that interferences among objects and space allocations for the resources could be easily investigated.

A mean-absolute-deviation based method for optimizing skid sequence in shipyard subassembly

  • Lee, Kyung-Tae;Kwon, Yung-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.277-284
    • /
    • 2022
  • In this paper, we proposes a method of optimizing the processing order of skids to minimize the span time in a conveyor environment of the shipbuilding subassembly process. The subassembly process consists of a series of fixed tasks where the required work time is varied according to the skid type. The loading order of skids on a conveyor which determines the span time should be properly optimized and the problem size exponentially increases with the number of skids. In this regard, we propose a novel method called UniDev by defining a measure of the mean-absolute-deviation about the time difference among simultaneously processed tasks and iteratively improving it. Through simulations with various numbers of skids and processes, it was observed that our proposed method can efficiently reduce the overall work time compared with the multi-start and the 2-OPT methods.

Work Planning Using Genetic Algorithm and 3-D Simulation at a Subassembly Line of Shipyard (유전자 알고리즘을 이용한 조선 소조립 로봇용접 공정 작업 계획 및 3-D 시뮬레이션)

  • 강현진;박주용;박현철
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.18-20
    • /
    • 2004
  • This study is to find the optimal work plan of robot welding in the subassembly process of shipbuilding and to verify the found solution through 3-D simulation. The optimal work plan was established by evenly distributing the work amount to each stage and finding the shortest work sequence. The shortest work sequence was found by using the genetic algorithm. The result was compared with the practically adopted case and verified through the 3-D simulation.

  • PDF

A Knowledge-based System for Assembly Process Planning (조립 공정계획을 위한 지식기반 시스템)

  • Park, Hong-Seok;Son, Seok-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.29-39
    • /
    • 1999
  • Many industrial products can be assembled in various sequences of assembly operations. To save time and cost in assembly process and to increase the quality of products, it is very important to choose an optimal assembly sequence. In this paper, we propose a methodology that generates an optimal assembly sequence by using the knowledge of experts. First, a product is divided into several sub-assemblies. Next, the disassembly sequences of sub-assembly are generated using disassembly rules and special information can be extracted through the disassembly process. By combining every assembly sequence of sub-assemblies, we can generate all the possible assembly sequences of a product. Finally, the expert system evaluates all the possible assembly sequences and finds an optimal assembly sequence. It can be achieved under consideration of the parameters such as assembly operation, tool change, safety of part. basepart location, setup change, distance, and orientation. The developed system is applied to UBR(Unit Bath Room) example.

  • PDF

Systematization of Module Design Principle for Recycling (자원 재활용을 위한 모듈 설계 원칙의 체계화)

  • 목학수;양태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.969-971
    • /
    • 2000
  • In this paper, shortening of product life cycle and wide disposal of consumer product have given rise to many environmental problems, it needs to propose module design principle for saving of disassembly cost and reusing of used part and subassembly. To analyze characteristics of module for recycling, materials and function of part and subassembly must be classified. In disassembly process, a unit operation can be grasped for disassembly function, worker, tool and sorting process. As a result of applying module design principle, simpler structure and reduced structural interference can be realized for product structure. For disassembly, simpler disassembly and quicker disassembly can be obtained for recycling.

  • PDF