• Title/Summary/Keyword: Subassembly

Search Result 64, Processing Time 0.021 seconds

Evaluation of Ease of Exchange of Subassembly Considering Module (모듈을 고려한 조립군의 교체성 평가)

  • 목학수;양태일;곽동영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.170-180
    • /
    • 2000
  • In this paper, to evaluate ease of exchange of subassembly considering module, it needs to analyze structure and function of subassembly, assembly and disassembly process. Exchange process of module can be divided into pre-process and in-process, and determination factors of exchange process are defined by analyzing characteristics of assembly and disassembly process. Based on the analysis of characteristics for structure and function of subassembly, influential factors of module can be proposed. Considered the interrelationship between determination factors of ease of exchange and influencing factors of module, ease of exchange can be evaluated.

  • PDF

The Complexity Evaluation System of Automobile Subassembly for Recycling (자원 재활용을 위한 자동차 조립군의 복잡도 평가시스템)

  • Mok, Hak-Soo;Moon, Kwang-Sup;Kim, Sung-Ho;Moon, Dae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.132-144
    • /
    • 1999
  • In this study, the complexity of the product was evaluated quantitatively considering the product structure, assembly process and disassembly process. To evaluate the complexity of the product, subassemblies of automobile were analyzed and then characteristics of part and subassembly were determined according to product structure, assembly process and disassembly process. Evaluation criteria of complexity were determined considering each characteristics of part and subassembly. Experiential evaluation was accomplished by classified evaluation criteria and time-motion evaluation was accomplished by the relational motion factor with characteristics of part and subassembly in MTM(Methods Time Measurement) and WF(Work Factor). The total complexity of product was determined by experiential evaluation and time-motion evaluation.

  • PDF

Digital Manufacturing based Modeling and Simulation of Production Process in Subassembly Lines at a Shipyard (디지털 생산을 기반으로 한 조선 소조립 공정 모델링 및 시뮬레이션)

  • 이광국;신종계;우종훈;최양렬;이장현;김세환
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.185-192
    • /
    • 2003
  • Digital Manufacturing-based production could be very effective in shipbuilding in order to save costs and time, to increase safety for workers, and to prevent bottleneck processes in advance. Digital shipbuilding system, a simulation-based production tool, is being developed to achieve such aspects in Korea. To simulate material flow in a subassembly line at a shipyard, the product, process and resources was modeled for the subassembly process which consisted of several sub-processes such as tack welding, piece alignment, tack welding, and robot welding processes. The analysis and modeling were carried out by using the UML(Unified Modeling Language), an object-oriented modeling method as well as IDEF(Integration DEFinition), a functional modeling tool. Initially, the characteristics of the shop resources were analyzed using the shipyard data, and the layout of the subassembly line was designed with the resources. The production process modeling of the subassembly lines was performed using the discrete event simulation method. Using the constructed resource and process model, the productivity and efficiency of the line were investigated. The number of workers and the variations In the resource performance such as that of a new welding robot were examined to simulate the changes in productivity. The bottleneck process floated according to the performance of the new resources. The proposed model was viewed three-dimensionally in a digital environment so that interferences among objects and space allocations for the resources could be easily investigated

  • PDF

Implementation of Automatic Teaching System for Subassembly Process in Shipbuilding (선박 소조립 공정용 로봇 자동교시 시스템의 구현)

  • 김정호;유중돈;김진오;신정식;김성권
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.96-105
    • /
    • 1996
  • Robot systems are widely utilized in the shipbuilding industry to enhance the productivity by automating the welding process. In order to increase productivity, it is necessary to reduce the time used for robot teaching. In this work, the automatic teaching system is developed for the subassembly process in the shipbuilding industry. A alser/vision sensor is designed to detect the weld seam and the image of the fillet joint is processed using the arm method. Positions of weld seams defined in the CAD database are transformed into the robot coordinate, and the dynamic programming technique is applied to find the sub-optimum weld path. Experiments are carried out to verify the system performance. The results show that the proposed automatic teaching system performs successfully and can be applied to the robot system in the subassembly process.

  • PDF

Weight of Modularization using the Exchangeability of Product (교체성을 고려한 모듈화 결정요소의 중요도)

  • Mok, Hak-Soo;Jeon, Chang-Su;Han, Chang-Hyo;Song, Min-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • The exchangeability of subassembly has a good relationship with the modularization of product. This relationship can be found by the analysis of the characteristics of a product. The weight for decision factors for the modularization can be determined by the exchangeability of a product or subassembly. The functions, structure, materials of subassembly are used as the decision parameters of exchangeability. Using these selected parameters, the modularization of a product, the characteristics of product structure, and the product function are analyzed. And then, the weighting factors could be calculated quantitatively using this relationship and the parameters of the exchangeability. The calculated weight can contribute to help a designer design for recycling (DFR), design for energy (DFE) and Eco-design.

Optimization of Robot Welding Process of Subassembly Using Genetic Algorithm in the Shipbuilding (유전자 알고리즘을 이용한 조선 소조립 로봇용접공정의 최적화)

  • Park, Ju-Yong;Seo, Jeong-Jin;Kang, Hyun-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.57-62
    • /
    • 2009
  • This research was carried out to improve the productivity in the subassembly process of shipbuilding through optimal work planning for the shortest work time. The work time consist of welding time, moving time of gantry, teaching time of robot and robot motion time. The shortest work time is accomplished by even distribution of work and the shortest welding sequence. Even distribution of work was done by appling the simple algorithm. The shortest work sequence was determined by using GA. The optimal work planning decreased the total work time of the subassembly process by 4.1%. The result showed the effectiveness of the suggested simple algorithm for even distribution of work and GA for the shortest welding sequence.

Thermal-Hydraulic Analysis of Internal Flow Blockage within Fuel Assembly of Nuclear Liquid-Metal Fast Reactor (액체금속원자로 핵연료집합체의 내부 유로폐쇄 열수력 해석)

  • Kwon Young Min;Hahn Dohee
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.47-50
    • /
    • 2002
  • The numerical simulation of a 271-rod fuel assembly of nuclear Liquid-Metal Fast Reactor (LMFR) with an infernal blockage has been carried out. Internal blockage within a subassembly is addressed in the safety assessment because it potentially has very serious consequences for the reactor as a whole. Three dimensional calculations were performed using the SABRE4 computer code for the range of blockage positions and sizes to investigate the seriousness and detectability of the internal blockage. The magnitude and location of the peak temperatures together with the temperature distribution at the subassembly exit were calculated in order to look at the potential for damage within the subassembly, and the possibility of blockage detection. The analysis result shows that the 6-subchannel blockage causes large temperature rise within a assembly with practically no change in mixed mean temperature at the assembly exit.

  • PDF

Work Planning Using Genetic Algorithm and 3-D Simulation at a Subassembly Line of Shipyard (유전자 알고리즘을 이용한 조선 소조립 로봇용접 공정 작업 계획 및 3-D 시뮬레이션)

  • 강현진;박주용;박현철
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.18-20
    • /
    • 2004
  • This study is to find the optimal work plan of robot welding in the subassembly process of shipbuilding and to verify the found solution through 3-D simulation. The optimal work plan was established by evenly distributing the work amount to each stage and finding the shortest work sequence. The shortest work sequence was found by using the genetic algorithm. The result was compared with the practically adopted case and verified through the 3-D simulation.

  • PDF

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.