• Title/Summary/Keyword: Subalpine forest

Search Result 85, Processing Time 0.025 seconds

Vegetation Rehabilitation and Management Strategy of the fired Woodland in Chesuk-bong of Mt. Chiri (지리산(智異山) 제석봉(帝釋峰) 산화적지(山火跡地)의 식생회복(植生回復) 및 관리방안(管理方案))

  • Chung, Jae-Min;Moon, Hyun-Shik;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.58-65
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of rehabilitation measures on the fired woodland of Chesuk-bong in Mt. Chiri through the vegetation structure and comparison of growth pattern between natural seedlings and transplanted Abies koreana seedlings. It was also discussed the rate of standing and fallen trees of dead conifers in the management strategy for vegetation regeneration and protection of sub-alpine area. In this fired woodland, shrub layers consisting of Weigela subsessilis, Sambucus williamsii var. coreana, Rhododendron schlippenbachii, R. mucronulatum, Tripterygium regelii, and etc. were gradually expanded, and tree species such as Betula ermani, Sorbus commixta, Acer pseudosieboldianum, and Malus baccata var. mandshurica were also regenerated. The growth of height and crown width of Abies koreana seedlings transplanted for vegetation regeneration were a little lower than those of natural seedlings. The seedlings of A. koreana transplanted in this fired woodland grew about 50.6% normally, but the others had multi-branched or growth stopped by death of terminal shoot. Because the number of dead conifers by fire tend to be gradually increased as time passed, it can occurs to the soil erosion and landslide by weakness of the cohesion and resistance of soil. Therefore, it is consider that rehabilitation measures projects of the fired woodland in subalpine area may be more prevention a natural disaster like soil erosion, flood and landslide.

  • PDF

Studies on the Structure of Abies koreana Community at Subalpine Zone in Hallasan (한라산(山) 아고산지대(亞高山地帶) 구상나무림 군집구조(群集構造)에 관한 연구(硏究))

  • Kim, Gab-Tae;Choo, Gab-Chul;Um, Tae-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • To investigate the structure and the conservation strategy of Korean native species, the Abies koreana forest at sub-alpine zone centering on the Witsaeorum(1,714m) shelter in Hallasan National Park was selected for a survey subject with 20 plots $(10{\times}10m)$ set up with random sampling method. Mean importance percent(MIP) of Abies koreana showed the highest numerical value-57.7%, and that of faxus cuspidata was the next value-16.2%. High positive correlations were shown between Taxus cuspidata and Prunus maximowiczii, Euonymus alatus; Betula ermani and Berberis amurensis var. quelpaertensis, Prunus sargentii; Prunus maximowiczii and Euonymus alatus; Berberis amurensis var. quelpaertensis and Prunus sargentii. Vigor of Abies koreana was so low that as much as 6.44% of total number of Abies Koreana investigated were dead. DBH of dead individuals ranged mainly from 5cm to 15cm.

Annual biomass production and amount of organic carbon in Abies koreana forest of subalpine zone at Mt. Halla (한라산 아고산대 구상나무림에서 연간 물질생산과 유기탄소량 변화)

  • Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.6
    • /
    • pp.627-633
    • /
    • 2014
  • Annual biomass production and amount of organic carbon in Abies koreana forest at Mt. Halla were conducted as a part of Korea National Long-Term Ecological Research (KNLTER). We measured standing biomass change of litter, soil production and organic carbon amounts of the forest floor and soil layer of A. koreana forest in Mt. Halla from 2009 to 2013 in permanent plots. Standing biomass, which was determined by allometric method, was converted into $CO_2$. The standing biomass in A. koreana forest was 98.88, 106.42, 107.67, 108.31, $91.48ton\;ha^{-1}$ in 2009, 2010, 2011, 2012 and 2013 year, respectively. The amount of annual carbon allocated to above ground was 35.95, 38.69, 38.96, 39.46, $33.2ton\;C\;ha^{-1}$ and below ground biomass was 8.54, 9.2, 9.49, 9.28, $7.97ton\;C\;ha^{-1}$ in 2009, 2010, 2011, 2012 and 2013 year, respectively. Amount of organic carbon returned to the forest via litterfall was 1.09, 1.80, 1.32, 2.46 and $1.20ton\;C\;ha^{-1}$ in 2009, 2010, 2011, 2012 and 2013. Amount of organic carbon in annual litter layer on forest floor was 2.74, 2.43, 2.00 and $1.16ton\;C\;ha^{-1}$ in 2010, 2011, 2012 and 2013 year, respectively. Amount of organic carbon within 20cm soil depth was 55.77, 54.9, 50.69, 44.42 and $41.87ton\;C\;ha^{-1}20cm^{-1}$ in 2009, 2010, 2011, 2012 and 2013 year, respectively. Then standing biomass and organic carbon distribution increased steadily until 2012. But there declined in 2013 because of the typhoon Bolaven. Thus, standing biomass and organic carbon distribution of this subalpine forest were largely affected by natural disturbance factor.

Mating Systems and Flowering Characteristics of Megaleranthis saniculifolia Ohwi in a Subalpine Zone of Sobaeksan National Park (소백산국립공원 아고산지역 모데미풀 (Megaleranthis saniculifolia Ohwi, Ranunculaceae)의 교배체제와 개화특성)

  • Lee, Hakbong;Lee, Hyeseon;Kang, Hyesoon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2017
  • Alpine plants with a scarcity of pollinators in harsh environments have been believed to undergo selfing for reproductive assurance; however, contradictory evidence is also available. Snowmelt regimes in alpine areas function to change life history characteristics of alpine plants such as flowering time and duration; yet the effects of snowmelt regimes have never been tested in alpine plants in Korea. This study was conducted to investigate the dichogamy, mating systems, and flowering characteristics of Megaleranthis saniculifolia populations [early and late snowmelt plots (ESP and LSP, respectively)] in a subalpine area of Sobaeksan Mountain in Korea. M. saniculifolia exhibited incomplete protogyny in that despite early maturation of pistils, maturation times of pistils and stamens within flowers were partly overlapped. Control and hand-outcrossing treatments produced significantly higher number of follicles and seeds per flower than autonomous and hand-selfing treatments. Based on the aggregate fruit set, the auto-fertility index (AI) and self-compatibility index (SI) were 0.33 and 0.50, respectively. Snowmelt occurred 10 days earlier in ESP than in LSP, thereby ESP and LSP showed distinct differences with regard to flower longevity and season, but showing no difference in peak flowering dates. We concluded that M. saniculifolia is an incomplete protogynous and largely outcrossing plant requiring pollinator service. Temporal variation in snowmelt time and subsequent changes in flowering characteristics under climate change may further threaten the population persistence of M. saniculifolia which has already been designated as endangered species in Korea.

Forest Vegetation Structure in Maruguem(the Ridge Line) Area of Dakmokryeong to Daetjae, the Baekdudaegan (백두대간(닭목령-댓재 구간) 마루금 주변의 산림식생구조)

  • Song, Ju-Hyeon;Kwon, Jino;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.28-51
    • /
    • 2019
  • The purpose of this study was to analyze forest vegetation structure in Marugeum (the ridge line) area between Dakmokryeong and Daetjae in Baekdudaegan through vegetation classification, importance value, species diversity, and CCA using the data that were collected from 245 quadrates through Braun-Blanquet vegetation survey method from May to September in 2017. The results of the forest vegetation classification identified 8 vegetation units with Quercus mongolica community group at the highest level. Q. mongolica community group was classified into the Cornus controversa community, Buxus koreana community, Sasa borealis community, Abies nephrolepis community, and Q. mongolica typical community. C. controversa community was further classified into Quercus dentata group, Filipendula glaberrima group, Larix kaempferi group, and C. controversa typical group. The result of the important value analysis showed that Q. dentata had the highest importance value at 19.1% in vegetation unit 1 while Q. mongolica had the highest importance value at 22.7%, 38.3%, 25.6%, 41.3%, 27.9%, and 41.6% in vegetation unit 2, 4, 5, 6, 7, and 8, respectively, and L. kaempferi had the highest importance value at 27.6% in vegetation unit 3. As such, Q. mongolica species generally represented the communities of Marugeum (the ridge line) area of Dakmokryeong to Daetjae in Baekdudaegan. The results of species diversity showed that vegetation unit 1 and 2 were 3.305 and 3.236, respectively, which were relatively higher than other vegetation units. It was considered that this result was due to the influence of high emergence of present species. The results of the CCA analysis of the correlations between biotic environmental factors and vegetation types showed that vegetation unit 1 was mainly correlated with the megaphanerophyte ratio and vine plant ratio. In the correlations between abiotic environmental factors and vegetation types, vegetation unit 7 was significantly correlated with altitude. From the perspective of ecological management, vegetation unit 5 represented by B. koreana community was inhabited by a variety of plants due to the species composition and location environment due to the geological characteristics that are typical of limestone area. Vegetation unit 7 represented by A. nephrolepis community was typified as subalpine vegetation widely distributed by relict species and endemic species. We concluded that it is necessary to manage these vegetation units with an ecologically differentiated approach.

Vegetation Structure and Distributional Characteristics of Abies koreana Forests in Mt. Halla (한라산 구상나무림의 식생구조와 분포 특성)

  • Song, Kuk-Man;Kim, Chan-Soo;Koh, Jung-Goon;Kang, Chang-Hun;Kim, Moon-Hong
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.415-425
    • /
    • 2010
  • The purpose of the present study was to analyze the vegetation structure and distributional characteristics of Abies koreana forests in Mt. Halla, and to provide basicdata for an ecological study on Abies koreana in Mt. Halla. The results of the analysis showed that the mean importance percentage(M.I.P,) of Abies koreana in the Youngsil and Bangaeoreum and the Azalea field were 28.3%, 23.6%, and 46.4%, respectively. The ratios of DBH (diameter at breast height) to height were similar in all region, except in the Azalea field, where Abies koreana of various ages, both young and old, were found. The species diversity (H) of the upper and lower layers in the Youngsil and Bangaeoreum and in the Azalea field were 0.625 and 0.810, 0.731 and 0.848, and 0.342 and 0.757, respectively. A total of 52 community were distributed at locations higher than 1,300m above sea level. The proportions of each community in the whole Abies koreana forest were 56.5%(Azalea field), 11.0% (Youngsil trail at 1,550-1,650 m above sea level), and 8.1%(Janggumok and Kundurewat region). The total area of the Abies koreana forest was calculated to be 795.3ha by combining all the areas of each community. An Abies koreana forest with the largest area was found at locations 1,500-1,600 m above sea level, taking up 38.8% of the total Abies koreana forest area. For the slopes of the distributional area of Abies koreana, 46.1%(highest proportion) of the total area was $10\sim25^{\circ}$, and for the azimuth of the distributional area, 17.4%(the highest proportion) of the total area was $0-45^{\circ}$. The vegetation structure showed large differences between areas. It was found, however, that the distribution was mostly in the areas with a relatively gentle slope. It is suggested that research be done to forecast the possible changes in the differences in the vegetation structures between different areas caused by climate changes. In addition, there is a need to monitor the Abies koreana and alpine plants in the subalpine zones of Mt. Halla, which are sensitive to climate change, to obtain the basic data that are necessary for the protection and maintenance of the ecosystem.

Syngeographical Characteristics of Forest Vegetation in Limestone Areas, Mt. Deokhang, Kangwondo (강원도 덕항산 석회암지대 산림식생의 군락지리 특성)

  • Bae, Kwan-Ho;Kim, Jun-Soo;Cho, Hyun-Je;Yun, Chung-Weon;Cho, Yong-Chan
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.161-170
    • /
    • 2014
  • This study classified the types of major forest vegetation and analyzed the syngeographical characteristics of the vegetation in the Mt. Deokhang with exhumed lime rocks. The forest vegetation on the ridge of Mt. Deokhang was classified into 1 community group, 3 communities, 2 groups, and 2 subgroups, 5 types in total. The syngeographical form of Deokhangsan fully exhibited the topographical peculiarity, proximity to subalpine, and limestone zone. In addition, Carex ciliato-marginata, Carex humilis var. nana, and so forth which appear as species with high consistency in the well-drained semiarid zone represent the soil environment of the lime stone area and northern plants such as Carex ussuriensis and Asplenium ruta-muraria represent the characteristics of the vegetation in alpestrine in close proximity. Moreover, the Carpinus turczaninowii in the area appears to show the characteristics of migratory vegetation due to the peculiarity of the habitat. The syngeographical characteristics of this study area show both the characteristics of the habitat and phytogeographic characteristics. Furthermore, they are expected to contribute to the diversity in community and habitat form in Korean peninsula in terms of vegetation science.

Climate Change Impact on Korean Forest and Forest Management Strategies (기후변화가 한국 산림에 미치는 영향과 관리 전략)

  • Kim, Moonil;Yoo, Somin;Kim, Nahui;Lee, Wona;Ham, Boyoung;Song, Cholho;Lee, Woo-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.413-425
    • /
    • 2017
  • This manuscript describes the relationship between climate change and forest growth, forest species, carbon stocks, and tree mortality. 1) In the aspect of forest growth, the growth of major coniferous species, including Pinus densiflora, had a negative correlation with temperature. On the other hand, major deciduous oak species, including Quercus variabilis and Quercus mongolica, had a positive correlation with temperature. 2) When considered in the aspect of the forest species distribution, various models commonly showed a decrease in the distribution of coniferous species and an increase in oak species due to climate change in the medium to long term. 3) From the carbon stock perspective, there was a difference in the estimation according to the status of forest management. Most of Korean forests will mature to become over-matured forest after year 2030 and are estimated to produce approximately 410 million ton forest biomass until 2090 with the current cutting regulations for sustainable forest management announced by the Korean Forest Service. 4) In the forest mortality, the mortality rate of the major coniferous species showed a clear tendency to increase higher temperatures while it decreased for the oak species with no verification of statistical significance. Moreover, the mortality of the subalpine coniferous species was projected to progress rapidly. considering the overall impacts described above, there should be a management strategy for coniferous species that are relatively vulnerable to climate change. Moreover, a sustainable forest plan in the aspect of ecosystem services, carbon sequestration and storage, which is linked to global issues such as Sustainable Development Goals, ecosystem services and negative emission.

Species Composition Dynamics and Seedling Density Along Altitudinal Gradients in Coniferous Forests of Seorak Mountain (설악산 상록침엽수림의 고도별 종조성 및 치수 밀도 변화)

  • Kim, Ji-Dong;Byeon, Seong Yeob;Song, Ju Hyeon;Chae, Seung Beom;Kim, Ho Jin;Lee, Jeong Eun;Yun, I Seul;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • The vertical distribution of vegetation can be classified according to the altitudinal gradient and the distribution of species along this gradient. The purpose of this study was to analyze the vegetation structure, species composition, dimensional density, and change according to altitude. These data illustrate the distribution of coniferous forest by altitude. By order of importance, the vegetation structure of this mixed forest consisted of Abies nephrolepis (12.2), Pinus koraiensis (10.86), and Acer komarovii (8.11). As a result of species composition according to the altitude, A. nephrolepis and Maianthemum bifolium increased in importance with increasing altitude. Tripterygium regelii emerged between 1,400 m and 1,600 m, which indicates that forest gaps were frequent at that elevation. The species diversity index was the highest from 1,400-1,500 m and coincided with the presence of forest gaps. The changes in A. nephrolepis of evergreen conifers increased significantly from 402 ± 5.4 ha.-1 to 528 ± 11.6 ha.-1 for two years, and decreased from 57 ± 1.3 ha.-1 to 56 ± 1.6 ha.-1 for P. koraiensis. The density of A. nephrolepis and P. koraiensis seedlings significantly increased at 1,500-1,600 m. The results of this study can be used as a basis to identify the mast seeding year with the increase or decrease of seedlings. In addition to documenting the evergreen conifer population of the Seorak Mountain, these results can be built upon for future monitoring of seedlings mortality.

A Study on the Forest Vegetation of Deogyusan National Park (덕유산 국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • From March 2012 to January 2013, this study was conducted as a part of the project for making a precise electronic ecological zoning map of vegetation on a highly reduced scale of 1 to 5,000 with a view to improving management efficiency of national parks and enlarging the availability of the data produced from the basic research monitoring the resources of national parks. For the research accuracy and rapidity, a vegetation map was specially created for the on-the-site-vegetation research. To make the map more meticulous, we categorized the vegetation database into five groups: broadleaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. After comparing the results of the data built for the vegetation research and the actual research findings, it was made clear that vegetation of both categories was almost the same in case of broad-leaved forest with 72.20% and 78.45% respectively, and also equivalent in other groups like, for example, coniferous forest (16.70%, 13.41%), mixed forest (9.50%, 7.49%) and rock vegetation (0.60%, 0.15%). According to the precise vegetation map produced from the research, the deciduous broad-leaved forest was the most widely prevalent type in the correlated hierarchical classification of vegetation, occupying 65.78% of the overall vegetation. It was followed by mountain valley forest (15.17%), coniferous forest (10.90%), and plantation forest (7.00%) in order. It is particularly noteworthy that Mt. Deogyusan national park has retained a very stable and versatile forest vegetation in the outstanding state since approximately 20% of the mountain turns out to belong to the I grade vegetation conservation classification which contains climax forests, unique vegetation, subalpine vegetation, matured stands which are older than 50 years and etc.