• Title/Summary/Keyword: Subalpine

Search Result 137, Processing Time 0.023 seconds

Analysis of the Location Environment of the Sub-alpine Coniferous Forest in National Parks Using GIS - Focusing on Abies koreana - (GIS를 활용한 국립공원 아고산대 침엽수림의 입지환경 분석 - 구상나무를 대상으로 -)

  • Kim, Tae-Geun;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.236-243
    • /
    • 2016
  • It was a case study to use as a basic data for efficient the preservation and management of subalpine coniferous forest in national parks. It is based on inhabitation condition of 210 individuals of Abies koreana Wilson that was found through local investigation in the sub-alpine zone of Jirisan National Park and Songnisan National Park. It analyzed the effect of the geographical location and topographical features, which are the basics of location environment, on the growth of A. koreana. The variables related to the growth of A. koreana are tree height and diameter at breast height. Topographical features include geographical longitude, altitude above sea level, slope of the mountains, aspect that describes the direction in which a slope faces and topographical wetness index. Topographical features were extracted through GIS spatial analysis. It used canonical correlation analysis to estimate whether the two variables groups have related to each other and how much they are related, if any, and estimated the effect of the geographical and topographical features on the growth structure of A. koreana using multiple regression analysis. The tree height and diameter at breast height that represent the growth structure of A. koreana show greater relation to geographical latitude distribution than topographical feature and the geographical and topographical factors show greater relation to diameter at breast height than tree height. The growth structure's variable and geographical and topographical variable of A. koreana have meaningful relation and the result shows that geographical and topographical variables explain 18.1% of the growth structure. The variables that affect the diameter at breast height of A. koreana are geographical latitude, topographical wetness index, aspect and altitude, which are put in order of statistical significance. The higher the latitude is, the smaller the diameter at breast height. Depending on the topographical feature, it becomes bigger. The variable that affects the tree height is topographical wetness index, which was the only meaningful variable. Overall, the tree height and diameter at breast height that are related to the growth structure of A. koreana are affected by geographical and topographical feature. It showed that the geographical feature affected it the most. Especially the effect of water among the topographical features is expected to be bigger than the other topographical factors. Based on the result, it is expected that geographical and topographical feature is an important factor for the growth structure of A. koreana. Even though it considered only the geographical and topographical features and used spatial analysis data produced by GIS, the research results will be useful for investigating and researching the growth environment of coniferous forest inhabiting in sub-alpine zone of national parks and are expected to be used as basic data for establishing measures to efficiently manage and preserve evergreen needleaf tree such as A. koreana.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.

A Study on the Forest Vegetation of Deogyusan National Park (덕유산 국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • From March 2012 to January 2013, this study was conducted as a part of the project for making a precise electronic ecological zoning map of vegetation on a highly reduced scale of 1 to 5,000 with a view to improving management efficiency of national parks and enlarging the availability of the data produced from the basic research monitoring the resources of national parks. For the research accuracy and rapidity, a vegetation map was specially created for the on-the-site-vegetation research. To make the map more meticulous, we categorized the vegetation database into five groups: broadleaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. After comparing the results of the data built for the vegetation research and the actual research findings, it was made clear that vegetation of both categories was almost the same in case of broad-leaved forest with 72.20% and 78.45% respectively, and also equivalent in other groups like, for example, coniferous forest (16.70%, 13.41%), mixed forest (9.50%, 7.49%) and rock vegetation (0.60%, 0.15%). According to the precise vegetation map produced from the research, the deciduous broad-leaved forest was the most widely prevalent type in the correlated hierarchical classification of vegetation, occupying 65.78% of the overall vegetation. It was followed by mountain valley forest (15.17%), coniferous forest (10.90%), and plantation forest (7.00%) in order. It is particularly noteworthy that Mt. Deogyusan national park has retained a very stable and versatile forest vegetation in the outstanding state since approximately 20% of the mountain turns out to belong to the I grade vegetation conservation classification which contains climax forests, unique vegetation, subalpine vegetation, matured stands which are older than 50 years and etc.

The Flora of Habitats Distributed with Allium victorialis var. platyphyllum Populations in the South Korea (우리나라 산마늘 개체군 자생지의 식물상)

  • Kim, Hye-Jin;Doh, Eun-Soo;Chang, Jun-Pok;Choi, Myung-Suk;Yang, Jae-Kyung;Cho, Hyun-Je;Bae, Kwan-Ho;Shin, Hak-Sub;Park, Hee-Kwon;Lee, Seo-Hui;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.284-294
    • /
    • 2011
  • This study was conducted to investigate the flora of habitats distributed with Allium victorialis var. platyphyllum populations in the South Korea. The vascular plants were surveyed 4 times from March 2009 to June 2010. The flora of studied area was listed as 214 taxa; 64 families, 142 genus, 181 species, 2 subspecies, 30 varieties, 1 forma. According to the specific plant species by classes, class I has 17 taxa; 15 families, 16 genus, 15 species, 2 varieties. Class II has 16 taxa; 13 families, 16 genus, 15 species, 2 varieties. Class III has 20 taxa; 16 families, 19 genus, 18 species, 2 varieties. Class III has 20 taxa; 16 families, 19 genus, 18 species, 2 varieties. Class IV has 23 taxa; 20 families, 23 genus, 19 species, 4 varieties. Class V has 2 taxa; 2 families, 2 genus, 2 species. Rare plant was 12 taxa; 9 families, 11 genus, 10 species, 2 varieties. Endemic plant was 21 taxa; 17 families, 19 genus, 18 species, 3 varieties. Endangered plant was not present in study area. It was considered that the ecosystem was probably stabilized for nothing of naturalized species and ecosystem disturbance species there. The characteristics of growth environments in the habitats with Allium victorialis var. platyphyllum were considered to be related to valley species and subalpine species such as Actinidia polygama, Cornus controversa, Rhododendron brachycarpum and Sorbus commixta.

Vegetation Structure, Regeneration Niche, and Dynamics of the Saplings in Abies koreana Forest of the Mt. Chiri (지리산(智異山) 구상나무임분(林分)의 식생구조(植生構造)와 치수(稚樹) 발생(發生) 및 생육(生育) 동태(動態))

  • Chung, Jae Min;Lee, Soo Won;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.34-43
    • /
    • 1996
  • We investigated the vegetation structure, and effects of canopy degree(gap or purlieu to 25%, 50%, 75%, over 75%) of the overstory on seedling regeneration and survivorship, and sapling density, growth and growth type of Abies koreana in subalpine of Mt. Chiri. The stem density in Abies koreana stand was higher in middle story than upper story, individual trees in upper story occupied larger area and were more apart, resulted in uniform distribution. The regeneration and survivorship of seedlings and saplings were best in 25% of crown closure, in order of 50%, gap, but lowest in over 75% of crown closure. The annual growth rate and recent 5 years growth rate of saplings were highest in gap or purlieu and getting lower toward gradually higher coverage of overstory. And 10- to 20-Year-old saplings were mainly regenerated in stands with lower density(I or II), but most of 20 to 30 years old saplings were growing in stands with higher density (III or IV). The number of "A" type saplings grown normally in gap or purlieu was gradually decreased in stand with higher density but the number of "D" or "E" types of which growth was supressed or prohibited by the high density was abruptly increased. Saplings normally growing in the gap and purlieu showed the panicle type, but those grown under dense crown were greatly suppressed and showed the umbellate type.

  • PDF

The Change of Seedling Emergence of Abies koreana and Altitudinal Species Composition in the Subalpine Area of Mt. Jiri over Short-Term(2015-2017) (지리산 아고산대의 단기간(2015-2017)에 걸친 구상나무 치수 발생 및 고도별 종구성 변화)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-hwan;Yun, Chung Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.313-322
    • /
    • 2018
  • To investigate the changing patterns of sub-alpine forest vegetation due to climate change requires accumulation of contiguous reference data and continuous monitoring. Furthermore, it is crucial to monitor short-term ecological change of lower level vegetation to understand the trend of long-term vegetation change. Therefore, this study carried out a vegetation survey and tree diameter measurement in 36 plots of Mt. Jiri inhabited by Abies koreana species from 2015 to 2017 to examine the short-term dynamics of Abies koreana seedling and the change of vegetation distribution according to altitude. We analyzed the importance value and MIV (mean importance value) of major species by each stratum as well as the importance value and species diversity index of major species and the change of seedling population by altitude. The results showed that Abies koreana had the highest importance value on tree layer, Rhododendron schlippenbachii on shrub layer and Tripterygium regelii on herb layer. MIV was high in the order of Abies koreana, Rhododendron schlippenbachii and Acer pseudosieboldianum. Regarding the species composition and species diversity index (H') along the altitudinal gradient, Sasa borealis showed high MI and low H' in the elevation less than 1,500 m, and IV of Tripterygium regelii and H' of herb layer were high in the elevation of 1,700 - 1,800 m. Abies koreana seedling decreased by 22.4% from 1,250 n/ha in 2015 to 970 n/ha in 2017 (p <0.05) throughout the investigated area. The decline rate along seedling and sapling height were 22.9% in less than 10 cm, 3.4% in 10-30 cm, 8.9% in 30-50 cm, 39.3% in 50-100 cm, and 55.1% more than 100 cm. Few of A. koreana seedlings appeared due to the dominance of Sasa borealis in the elevation of 1,500 m or less and due to the dominance and high species diversity of Tripterygium regelii in the elevation of 1,700-1,800 m. On the other hand, many of A. koreana seedlings appeared in the elevation of 1,600-1,700 m due to no distribution of S. borealis and T. regelii species in that altitude range. Therefore, we concluded that those seedlings and saplings of A. koreana could be more stable in the altitude of 1,600-1,700 m.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.