• Title/Summary/Keyword: Sub-reflector

Search Result 62, Processing Time 0.022 seconds

Design and optimization of thermal neutron activation device based on 5 MeV electron linear accelerator

  • Mahnoush Masoumi;S. Farhad Masoudi;Faezeh Rahmani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4246-4251
    • /
    • 2023
  • The optimized design of a Neutron Activation Analysis (NAA) system, including Delayed Gamma NAA (DGNAA) and Prompt Gamma NAA (PGNAA), has been proposed in this research based on Mevex Linac with 5 MeV electron energy and 50 kW power as a neutron source. Based on the MCNPX 2.6 simulation, the optimized configuration contains; tungsten as an electron-photon converter, BeO as a photoneutron target, BeD2 and plexiglass as moderators, and graphite as a reflector and collimator, as well as lead as a gamma shield. The obtained thermal neutron flux at the beam port is equal to 2.06 × 109 (# /cm2.s). In addition, using the optimized neutron beam, the detection limit has been calculated for some elements such as H-1, B-10, Na-23, Al-27, and Ti-48. The HPGe Coaxial detector has been used to measure gamma rays emitted by nuclides in the sample. By the results, the proposed system can be an appropriate solution to measure the concentration and toxicity of elements in different samples such as food, soil, and plant samples.

Design of W-Band Cassegrain Antenna for Beam Steering (빔 조향을 위한 W-대역 카세그레인 안테나 설계)

  • Park, Myung-Hoon;Han, Jun-Yong;Lee, Taek-Kyung;Lee, Jae-Wook;Oh, Gyung-Hyun;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.358-368
    • /
    • 2016
  • In this paper, for the mechanical beam steering of the Cassegrain antenna, the steering performances of the main reflector tilting method are characterized, and the Cassegrain antenna for the antenna rotating method is designed and its performances are measured. In the Cassegrain antenna operating at W-band, the changes of characteristics due to changes in the sizes of the main/sub-reflectors and other structural changes are analyzed to obtain the structural variables satisfying the performance goal. The manufactured antenna in W-band shows the measured gain of 42.08 dBi, 3 dB beamwidth of $1.32^{\circ}$, $1.14^{\circ}$ and the return loss($S_{11}$) of -23.58 dB at the center frequency of 94 GHz.

An Optimum Design of the Shaped Cassegrainian Antenna (수정 곡면 카세그레인 안테나의 최적 설계)

  • Ryu, Hwang;Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The purpose of this paper is an optimum design of the shaped Cassegrainian antenna system for the base station. The process of the shaped Cassegrainian antenna design is as follows : 1) the aperture field distribution is determined so as to meet design specifications, 2) a proper design parameter is selected, 3) extracting of the dimension data for the main and sub-reflector antenna To do these, Hansen's distribution is chosen as the aperture field, and the far-field pattern from the aperture is predicted by the angular spectrum. Firstly, the aperture field distribution is designed to satisfy the specification for design frequency, it is confirmed if this distribution meet the specification for another frequency band. The main- and the sub-reflectors are synthesized so as for the given beamwaveguide feed pattern to be transformed into the prescribed aperture distribution. The designed system has circular aperture, left-right symmetry and no tilted structure. The continuous surface functions of reflectors are obtained by adopting the global interpolation technique to the discrete reflector profiles. Jacobi polynomial-sinusoidal is used as the basis function. A Ka-band Cassegrainian antenna operates over 17.7 – 20.2 GHz for down-link band and 27.5 – 30 GHz for up-link band is designed.

  • PDF

Ultasonic Reflection Characteristics of the Underwater Corner Reflector (수중코오너리프렉터의 초음파반사특성에 관한 연구)

  • Lee, Dae-Jae;Sin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1983
  • The corner reflector is used to increase the echoing area of radar targets in the air, and it can also be applied to increase the echoing area of the sonar targets under water. As the basic research for this application, the authors investigated the ultrasonic reflection characteristics under water for the corner reflector which was made of aluminum plate. The experiments were made by pulse measuring method with the magnetostrictive ferrite transducers of 28, 50 and 75KHz in the experimental water tank. The results obtained are as follows; 1. The target strength of corner reflectors were increased in proportion to the diameter and were greater at higher frequency of 75KHz than at lower frequency of 28KHz. 2. In the case of 5 corner reflectors of 150mm in diameter which have corner angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$the measured values of the maximum target strength at 75KHz were-25.0 dB, -17.2dB, -15.1dB, -13.4dB and 11.0dB, and then the number of main lobes showing the maximum target strength in the backscattering patterns were 24, 12, 8, 6 and 4, respectively. 3. When 7 corner reflector of 80mm in diameter and 90$^{\circ}$ in the corner angle was located on the minor axis of the horizontal section with directional angles of 0$^{\circ}$, 2.5$^{\circ}$, 5.0$^{\circ}$, 7.5$^{\circ}$, 10$^{\circ}$ and 12.5$^{\circ}$ against the sound beam axis, the measured values of the target strength on each position at 75KHz were -21.2dB, -21.9dB, -26.0dB, -30.5dB and -36.8dB, respectively.

  • PDF

Design of the Shaped Cassegrain Antenna Considering the Excited Power Function (급전 함수를 고려한 수정곡면 캐서그레인 안테나 설계)

  • Kong, Ki-Bok;Kim, Jong-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.908-914
    • /
    • 2013
  • A shaped Cassegrain antenna is designed from the condition of the same path length at the equi-phase surface by using the conservation of energy and Snell's law. In order to improve the phase error efficiency of aperture surface, the surface profile of the main and sub-reflectors is found to satisfy the power distribution and the equi-phase condition at the aperture surface. The sidelobe levels of 36.4 dB and 33.9 dB are achieved at the AZ and EL planes, respectively from numerical calculation by physical optics method at Ku band and the directivity of designed antenna is 10 percent greater than that of conventional antenna.

Physics study for high-performance and very-low-boron APR1400 core with 24-month cycle length

  • Do, Manseok;Nguyen, Xuan Ha;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.869-877
    • /
    • 2020
  • A 24-month Advanced Power Reactor 1400 (APR1400) core with a very-low-boron (VLB) concentration has been investigated for an inherently safe and high-performance PWR in this work. To develop a high-performance APR1400 which is able to do the passive frequency control operation, VLB feature is essential. In this paper, the centrally-shielded burnable absorber (CSBA) is utilized for an efficient VLB operation in the 24-month cycle APR1400 core. This innovative design of the VLB APR1400 core includes the optimization of burnable absorber and loading pattern as well as axial cutback for a 24-month cycle operation. In addition to CSBA, an Er-doped guide thimble is also introduced for partial management of the excess reactivity and local peaking factor. To improve the neutron economy of the core, two alternative radial reflectors are adopted in this study, which are SS-304 and ZrO2. The core reactivity and power distributions for a 2-batch equilibrium cycle are analyzed and compared for each reflector design. Numerical results show that a VLB core can be successfully designed with 24-month cycle and the cycle length is improved significantly with the alternative reflectors. The neutronic analyses are performed using the Monte Carlo Serpent code and 3-D diffusion code COREDAX-2 with the ENDF/B-VII.1.

Analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS using the Serpent Monte Carlo code and the ENDF/B-VIII.0 nuclear data library

  • Hartanto, Donny;Liem, Peng Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2725-2732
    • /
    • 2020
  • This paper presents the neutronics benchmark analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS (Reaktor Serba Guna G.A. Siwabessy) calculated by the Serpent Monte Carlo code and the newly released ENDF/B-VIII.0 nuclear data library. RSG-GAS is a 30 MWth pool-type material testing research reactor loaded with plate-type low-enriched uranium fuel using light water as a coolant and moderator and beryllium as a reflector. Two groups of critical benchmark problems are derived on the basis of the criticality and control rod calibration experiments of the first core of RSG-GAS. The calculated results, such as the neutron effective multiplication factor (k) value and the control rod worth are compared with the experimental data. Moreover, additional calculated results, including the neutron spectra in the core, fission rate distribution, burnup calculation, sensitivity coefficients, and kinetics parameters of the first core will be compared with the previous nuclear data libraries (interlibrary comparison) such as ENDF/B-VII.1 and JENDL-4.0. The C/E values of ENDF/B-VIII.0 tend to be slightly higher compared with other nuclear data libraries. Furthermore, the neutron reaction cross-sections of 16O, 9Be, 235U, 238U, and S(𝛼,𝛽) of 1H in H2O from ENDF/B-VIII.0 have substantial updates; hence, the k sensitivities against these cross-section changes are relatively higher than other isotopes in RSG-GAS. Other important neutronics parameters such as kinetics parameters, control rod worth, and fission rate distribution are similar and consistent among the nuclear data libraries.

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor

  • Jian Li;Jing Zhao;Zhihong Liu;Ding She;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.147-159
    • /
    • 2024
  • Plutonium-238 has always been considered as the one of the promising radioisotopes for space nuclear power supply, which has long half-life, low radiation protection level, high power density, and stable fuel form at high temperatures. The industrial-scale production of 238Pu mainly depends on irradiating solid 237NpO2 target in high flux reactors, however the production process faces problems such as large fission loss and high requirements for product quality control. In this paper, a conceptual design study of producing 238Pu in a multi-purpose high flux reactor was evaluated and analyzed, which includes a sensitivity analysis on 238Pu production and a further study on the irradiation scheme. It demonstrated that the target structure and its location in the reactor, as well as the operation scheme has an impact on 238Pu amount and product quality. Furthermore, the production efficiency could be improved by optimizing target material concentration, target locations in the core and reflector. This work provides technical support for irradiation production of 238Pu in high flux reactors.

Photocatalyst characteristic of WO3 thin film with sputtering process (스퍼터링법에 의해 제작된 WO3 박막의 광분해 특성)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.420-424
    • /
    • 2016
  • In this study, we developed photocatalytic technology to address the emerging serious problem of air pollution through indoor air cleaning. A single layer of $WO_3$ was prepared by using the dry process of general RF magnetron sputtering. At a base vacuum of $1.8{\times}10^{-6}$[Torr], the optical and electrical properties of the resulting thin films were examined for use as a transparent electrode as well as a photocatalyst. The single layer of $WO_3$ prepared at an RF power of 100 [W], a pressure of 7 [mTorr] and Ar and $O_2$ gas flow rates of 70 and 2 sccm, respectively, showed uniform and good optical transmittance of over 80% in the visible wavelength range from 380 [nm] to 780 [nm]. The optical catalyst characteristics of the $WO_3$ thin film were examined by investigating the optical absorbance and concentration variance in methylene blue, where the $WO_3$ thin film was immersed in the methylene blue. The catalytic characteristics improved with time. The concentration of methylene blue decreased to 80% after 5 hours, which confirms that the $WO_3$ thin film shows the characteristics of an optical catalyst. Using the reflector of a CCFL (cold cathode fluorescent lamp) and the lens of an LED (lighting emitting diode), it is possible to enhance the air cleaning effect of next-generation light sources.