• Title/Summary/Keyword: Sub-band processing

Search Result 69, Processing Time 0.029 seconds

The Physicochemical and Optical Characteristics of FeaSibCcHd Films (FeaSibCcHd 박막의 물리·화학 및 광학적 특성)

  • Kim, Kyung-soo;Jean, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • When the preparation method of iron silicide films possess the annealing process, the interfacial state of the films is not fine. The good quality films were obtained as the plasma was used without annealing processing. Since the injected precursors were various active species in the plasma state, the organic compound was contained in the prepared films. We confirmed the formation of Fe-Si bonds as well as the organic compound by Fe and Si vibration mode in Raman scattering spectrum at $250cm^{-1}$ and Ft-IR. Because of epitaxy growth being progressed by the high energy of plasma at the low temperature of substrate, iron silicide was epitaxially grown to ${\beta}$-phase that had lattice structure such as [220]/[202] and [115]. Band gap of the prepared films had value of 1.182~1.174 eV and optical gap energy was shown value of 3.4~3.7 eV. The Urbach tail and the sub-band-gap absorptions were appeared by organic compound in films. We knew that the prepared films by plasma were obtained a good quality films because of being grown single crystal.

  • PDF

Multi-band Approach to Deep Learning-Based Artificial Stereo Extension

  • Jeon, Kwang Myung;Park, Su Yeon;Chun, Chan Jun;Park, Nam In;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.398-405
    • /
    • 2017
  • In this paper, an artificial stereo extension method that creates stereophonic sound from a mono sound source is proposed. The proposed method first trains deep neural networks (DNNs) that model the nonlinear relationship between the dominant and residual signals of the stereo channel. In the training stage, the band-wise log spectral magnitude and unwrapped phase of both the dominant and residual signals are utilized to model the nonlinearities of each sub-band through deep architecture. From that point, stereo extension is conducted by estimating the residual signal that corresponds to the input mono channel signal with the trained DNN model in a sub-band domain. The performance of the proposed method was evaluated using a log spectral distortion (LSD) measure and multiple stimuli with a hidden reference and anchor (MUSHRA) test. The results showed that the proposed method provided a lower LSD and higher MUSHRA score than conventional methods that use hidden Markov models and DNN with full-band processing.

Development of a Digital Receiver for Detecting Radar Signals (레이더 신호 탐지용 디지털수신기 개발)

  • Cha, Minyeon;Choi, Hyeokjae;Kim, Sunghoon;Moon, Byungjin;Kim, Jaeyun;Lee, Jonghyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.332-340
    • /
    • 2019
  • Electronic warfare systems are needed to be advantageous in the modern war. Many radar threat signals with various frequency spectrums and complicated techniques exist. For detecting the threats, a receiver with wide and narrow-band digital processing is needed. To process a wide-band searching mode, a polyphase filter bank has become the architecture of choice to efficiently detect threats. A polyphase N-path filter aligns the re-sampled time series in each path, and a discrete Fourier transform aligns phase and separates the sub-channel baseband aliases. Multiple threats and CW are detected or rejected when the signals are received in different sub-channels. And also, to process a narrow-band precision mode, a direct down converter is needed to reduce aliasing by using a decimation filter. These digital logics are designed in a FPGA. This paper shows how to design and develop a wide and narrow-band digital receiver that is capable to detect the threats.

Microwave Absorbing Properties of M-type Barium Ferrites with BaTi0.5Co0.5Fe11O19 Composition in Ka-band Frequencies (BaTi0.5Co0.5Fe11O19 조성을 갖는 M형 바륨 페라이트의 Ka-밴드 전파흡수특성)

  • Kim, Yong-Jin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.203-208
    • /
    • 2009
  • Magnetic and Ka-band absorbing properties have been investigated in Ti-Co substituted M-type barium hexaferrites with $BaTi_{0.5}Co_{0.5}Fe_{11}O_{19}$ composition. The ferrite powders were prepared by conventional ceramic processing technique and used as absorbent fillers in ferrite-rubber composites. The magnetic properties were measured by vibrating sample magnetometer. The complex permeability and dielectric constant were measured by using the WR-28 rectangular waveguide and network analyzer in the frequency range 26.5~40 GHz. For the Ti-Co substituted M-hexaferrites, the ferromagnetic resonance is observed at Ka-band (29.4 GHz). The matching frequency and matching thickness are determined by using the solution map of impedance matching. A wide band microwave absorbance is predicted with controlled ferrite volume fraction and absorber thickness.

Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst

  • An, HyeLan;Kang, Leeseung;Ahn, Hyo-Jin;Choa, Yong-Ho;Lee, Chan Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • $TiO_2/CuS$ nanocomposites were fabricated by precipitation of nanosized CuS via sonochemical method on electrospun $TiO_2$ nanofibers, and their structure, chemical bonding states, optical properties, and photocatalytic activity were investigated. In the $TiO_2/CuS$ nanocomposite, the position of the conduction band for CuS was at a more negative than that of TiO; meanwhile, the position of the valence band for CuS was more positive than those for TiO, indicating a heterojunction structure belonging to type-II band alignment. Photocatalytic activity, measured by decomposition of methylene blue under visible-light irradiation (${\lambda}$ > 400 nm) for the $TiO_2/CuS$ nanocomposite, showed a value of 85.94% at 653 nm, which represented an improvement of 52% compared to that for single $TiO_2$ nanofiber (44.97% at 653 nm). Consequently, the photocatalyst with $TiO_2/CuS$ nanocomposite had excellent photocatalytic activity for methylene blue under visible-light irradiation, which could be explained by the formation of a heterojunction structure and improvement of the surface reaction by increase in surface area.

Low Power and Long Range MAC Protocol for Inter-Drone communications based Sub-GHz Band (Drone간 Ad hoc통신 시스템을 위한 Sub-GHz 저전력 원거리 MAC Protocol 연구)

  • Lee, Joon beom;Min, Jin gi;Seo, Hyo-seung;Song, Dong hyuk;Kim, Hyeon jung;Son, Bong-ki;Lee, Jaeho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.90-93
    • /
    • 2016
  • 본 논문에서는 Sub-GHz band module을 Drone에 탑재하여 Drone과 전원공유로 Node(Drone)간 Low power and Long range Ad-hoc communication을 할 수 있는 방법을 제안하고자 한다. 또한 이동성이 있는 Node(Drone)의 Low power and Long range communication을 위해서 Drone에 적합한 Asynchronous MAC (medium access control) protocol을 비교분석하여 적용하였다. 본 고에서는 무선 센서 네트워크의 응용 범위가 확대되면서 고정된 인프라 없이 Drone간에 실시간 정보를 통신 할 수 있게 하고 사람의 이동이 어렵고 위험한 재난지역, 방사선노출지역 또는 우천시 유인기와 사람의 접근이 불가능한 지역을 Drone이 대신 이동하여 인명피해를 줄이고 안전하게 필요한 데이터를 수집하여 상황관제실로 전송하는 서비스를 제공하고자 한다.

A Low Frequency Band Watermarking with Weighted Correction in the Combined Cosine and Wavelet Transform Domain

  • Deb, Kaushik;Al-Seraj, Md. Sajib;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • A combined DWT and DCT based watermarking technique of low frequency watermarking with weighted correction is proposed. The DWT has excellent spatial localization, frequency spread and multi-resolution characteristics, which are similar to the theoretical models of the human visual system (HVS). The DCT based watermarking techniques offer compression while DWT based watermarking techniques offer scalability. These desirable properties are used in this combined watermarking technique. In the proposed method watermark bits are embedded in the low frequency band of each DCT block of selected DWT sub-band. The weighted correction is also used to improve the imperceptibility. The extracting procedure reverses the embedding operations without the reference of the original image. Compared with the similar approach by DCT based approach and DWT based approach, the experimental results show that the proposed algorithm apparently preserves superiori mage quality and robustness under various attacks such as JPEG compression, cropping, sharping, contrast adjustments and so on.

Influence of coating and annealing on the luminescence of Ga2O3 nanowires

  • Kim, Hyunsu;Jin, Changhyun;Lee, Chongmu;Ko, Taegyung;Lee, Sangmin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.59-63
    • /
    • 2012
  • Ga2O3-core/CdO-shell nanowires were synthesized by a two step process comprising thermal evaporation of GaN powders and sputter-deposition of CdO. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses revealed that the cores and the shells of the annealed coaxial nanowires were single crystal of monoclinic Ga2O3 and FCC CdO, respectively. As-synthesized Ga2O3 nanowires showed a broad emission band at approximately 460 nm in the blue region. The blue emission intensity of the Ga2O3 nanowires was slightly decreased by CdO coating, but it was significantly increased by subsequent thermal annealing in a reducing atmosphere. The major emission peak was also shifted from ~500 nm by annealing in a reducing atmosphere, which is attributed to the increases in the Cd interstitial and O vacancy concentrations in the cores.

Distorted Image Database Retrieval Using Low Frequency Sub-band of Wavelet Transform (웨이블릿 변환의 저주파수 부대역을 이용한 왜곡 영상 데이터베이스 검색)

  • Park, Ha-Joong;Kim, Kyeong-Jin;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.8-18
    • /
    • 2008
  • In this paper, we propose an efficient algorithm using wavelet transform for still image database retrieval. Especially, it uses only the lowest frequency sub-band in multi-level wavelet transform so that a retrieval system uses a smaller quantity of memory and takes a faster processing time. We extract different textured features, statistical information such as mean, variance and histogram, from low frequency sub-band. Then we measure the distances between the query image and the images in a database in terms of these features. To obtain good retrieval performance, we use the first feature (mean and variance of wavelet coefficients) to filter out most of the unlikely images. The rest of the images are considered to be candidate images. Then we apply the second feature (histogram of wavelet coefficient) to rank all the candidate images. To evaluate the algorithm, we create various distorted image databases using MIT VisTex texture images and PICS natural images. Through simulations, we demonstrate that our method can achieve performance satisfactorily in terms of the retrieval accuracy as well as the both memory requirement and computational complexity. Therefore it is expected to provide good retrieval solution for JPEG-2000 using wavelet transform.

  • PDF

Signal processing algorithm for converting variable bandwidth in the multiple channel systems (다중채널 시스템에서 가변 대역폭 절환을 위한 신호처리 알고리즘)

  • Yoo, Jae-Ho;Kim, Hyeon-Su;Choi, Dong-Hyun;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • The algorithm of multiple channel signal processing requires the flexibility of variable frequency band, efficient allocation of transmission power, and flexible frequency band reallocation to satisfy various service types which requires different transmission rates and frequency band. There are three methods including per-channel approach, multiple tree approach, and block approach performing frequency band reallocation method by channelization and dechannelization in the multiple-channel signal. This paper proposes an improved per-channel approach for converting the frequency band of multiple carrier signals efficiently. The proposed algorithm performs decimation and interpolation using CIC(cascaded integrator comb filter), half-band filter, and FIR filter. In addition, it performs filtering of each sub-channel, and reallocates channel band through FIR low-pass filter in the multiple-channel signal. The computer simulation result shows that the perfect reconstruction of output signal and the flexible frequency band reallocation is performed efficiently by the proposed algorithm.