• Title/Summary/Keyword: Sub-Pixel Detection

Search Result 44, Processing Time 0.023 seconds

A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm (Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구)

  • 김대성;조영욱;한동엽;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF

A Study on Linear Spectral Mixing Model for Hyperspectral Imagery with Geometric Method (기하학적 기법을 이용한 하이퍼스펙트럴 영상의 Linear Spectral Mixing모델에 관한 연구)

  • 장은석;김대성;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.11a
    • /
    • pp.23-29
    • /
    • 2003
  • Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.

  • PDF

Object Detection and 3D Position Estimation based on Stereo Vision (스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정)

  • Son, Haengseon;Lee, Seonyoung;Min, Kyoungwon;Seo, Seongjin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.318-324
    • /
    • 2017
  • We introduced a stereo camera on the aircraft to detect flight objects and to estimate the 3D position of them. The Saliency map algorithm based on PCT was proposed to detect a small object between clouds, and then we processed a stereo matching algorithm to find out the disparity between the left and right camera. In order to extract accurate disparity, cost aggregation region was used as a variable region to adapt to detection object. In this paper, we use the detection result as the cost aggregation region. In order to extract more precise disparity, sub-pixel interpolation is used to extract float type-disparity at sub-pixel level. We also proposed a method to estimate the spatial position of an object by using camera parameters. It is expected that it can be applied to image - based object detection and collision avoidance system of autonomous aircraft in the future.

Design and Implementation of Automatic Detection Method of Corners of Grid Pattern from Distortion Corrected Image (왜곡보정 영상에서의 그리드 패턴 코너의 자동 검출 방법의 설계 및 구현)

  • Cheon, Sweung-Hwan;Jang, Jong-Wook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2645-2652
    • /
    • 2013
  • For a variety of vision systems such as car omni-directional surveillance systems and robot vision systems, many cameras have been equipped and used. In order to detect corners of grid pattern in AVM(Around View Monitoring) systems, after the non-linear radial distortion image obtained from wide-angle camera is corrected, corners of grids of the distortion corrected image must be detected. Though there are transformations such as Sub-Pixel and Hough transformation as corner detection methods for AVM systems, it is difficult to achieve automatic detection by Sub-Pixel and accuracy by Hough transformation. Therefore, we showed that the automatic detection proposed in this paper, which detects corners accurately from the distortion corrected image could be applied for AVM systems, by designing and implementing it, and evaluating its performance.

A Video based Web Inspection System for Real-time Detection of Paper Defects during Papermaking Processes (제지공정의 실시간 결함 검출을 위한 영상 기반 웹 검사 시스템)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2010
  • In this paper, we propose a web inspection system (WIS) for real-time detection of paper defects which can cause critical fractures during papermaking process. Our system incorporates high speed line-scan camera, lighting system, and detection algorithm to provide robust and precise detection of paper defects in real-time. Since edge defects are very crucial to the paper fractures, our system focuses on the edge region of the paper instead of inspecting the whole paper area. In our algorithm, image projection and sub-pixel operation are utilized to detect the edge defects precisely and connected component labeling and shape analysis techniques are adopted to extract various kinds of the region defects. Experimental results revealed that our web inspection system is very efficient for detecting paper defects during papermaking processes.

Study on the Image Information Analysis for Inaccessible Area (비접근 지역에 대한 영상정보 분석 연구)

  • 함영국;김영환;신석철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.343-348
    • /
    • 1998
  • In this study, we extracted several terrain information using satellite and aerial images. We detected change of terrain using Landsat Thematic Mapper(TM) and aerial images which are multitemporal data. In change detection processing, we first classified satellite images by ISODATA algorithm which is an unsupervised learning algorithm, then performed change detection. By this method, we could obtain good result. Also we introduce sub-pixel concept to classify road and agriculture area in inaccessible area. In summary, in chang detection processing, we can find that the used method is efficient.

  • PDF

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Jeong, Manhee;Hammig, Mark
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2572-2580
    • /
    • 2020
  • Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

A New Confidence Measure for Eye Detection Using Pixel Selection (눈 검출에서의 픽셀 선택을 이용한 신뢰 척도)

  • Lee, Yonggeol;Choi, Sang-Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.291-296
    • /
    • 2015
  • In this paper, we propose a new confidence measure using pixel selection for eye detection and design a hybrid eye detector. For this, we produce sub-images by applying a pixel selection method to the eye patches and construct the BDA(Biased Discriminant Analysis) feature space for measuring the confidence of the eye detection results. For a hybrid eye detector, we select HFED(Haar-like Feature based Eye Detector) and MFED(MCT Feature based Eye Detector), which are complementary to each other, as basic detectors. For a given image, each basic detector conducts eye detection and the confidence of each result is estimated in the BDA feature space by calculating the distances between the produced eye patches and the mean of positive samples in the training set. Then, the result with higher confidence is adopted as the final eye detection result and is used to the face alignment process for face recognition. The experimental results for various face databases show that the proposed method performs more accurate eye detection and consequently results in better face recognition performance compared with other methods.

Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis (3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘)

  • Lee, Bok Ju;Moon, Hyuck;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

A Motion Detection Approach based on UAV Image Sequence

  • Cui, Hong-Xia;Wang, Ya-Qi;Zhang, FangFei;Li, TingTing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1224-1242
    • /
    • 2018
  • Aiming at motion analysis and compensation, it is essential to conduct motion detection with images. However, motion detection and tracking from low-altitude images obtained from an unmanned aerial system may pose many challenges due to degraded image quality caused by platform motion, image instability and illumination fluctuation. This research tackles these challenges by proposing a modified joint transform correlation algorithm which includes two preprocessing strategies. In spatial domain, a modified fuzzy edge detection method is proposed for preprocessing the input images. In frequency domain, to eliminate the disturbance of self-correlation items, the cross-correlation items are extracted from joint power spectrum output plane. The effectiveness and accuracy of the algorithm has been tested and evaluated by both simulation and real datasets in this research. The simulation experiments show that the proposed approach can derive satisfactory peaks of cross-correlation and achieve detection accuracy of displacement vectors with no more than 0.03pixel for image pairs with displacement smaller than 20pixels, when addition of image motion blurring in the range of 0~10pixel and 0.002variance of additive Gaussian noise. Moreover,this paper proposes quantitative analysis approach using tri-image pairs from real datasets and the experimental results show that detection accuracy can be achieved with sub-pixel level even if the sampling frequency can only attain 50 frames per second.