• Title/Summary/Keyword: Sub-Image

Search Result 1,282, Processing Time 0.034 seconds

An image sequence coding using motion-compensated transform technique based on the sub-band decomposition (움직임 보상 기법과 분할 대역 기법을 사용한 동영상 부호화 기법)

  • Paek, Hoon;Kim, Rin-Chul;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In this paper, by combining the motion compensated transform coding with the sub-band decomposition technique, we present a motion compensated sub-band coding technique(MCSBC) for image sequence coding. Several problems related to the MCSBC, such as a scheme for motion compensation in each sub-band and the efficient VWL coding of the DCT coefficients in each sub-band are discussed. For an efficient coding, the motion estimation and compensation is performed only on the LL sub-band, but the discrete cosine transform(DCT) is employed to encode all sub-bands in our approach. Then, the transform coefficients in each sub-band are scanned in a different manner depending on the energy distributions in the DCT domain, and coded by using separate 2-D Huffman code tables, which are optimized to the probability distributions in the DCT domain, and coded by using separate 2-D Huffman code tables, which are optimized to the probability distribution of each sub-band. The performance of the proposed MCSBC technique is intensively examined by computer simulations on the HDTV image sequences. The simulation results reveal that the proposed MCSBC technique outperforms other coding techniques, especially the well-known motion compensated transform coding technique by about 1.5dB, in terms of the average peak signal to noise ratio.

  • PDF

Feasibility Study of Synthetic Diffusion-Weighted MRI in Patients with Breast Cancer in Comparison with Conventional Diffusion-Weighted MRI

  • Bo Hwa Choi;Hye Jin Baek;Ji Young Ha;Kyeong Hwa Ryu;Jin Il Moon;Sung Eun Park;Kyungsoo Bae;Kyung Nyeo Jeon;Eun Jung Jung
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1036-1044
    • /
    • 2020
  • Objective: To investigate the clinical feasibility of synthetic diffusion-weighted imaging (sDWI) at different b-values in patients with breast cancer by assessing the diagnostic image quality and the quantitative measurements compared with conventional diffusion-weighted imaging (cDWI). Materials and Methods: Fifty patients with breast cancer were assessed using cDWI at b-values of 800 and 1500 s/mm2 (cDWI800 and cDWI1500) and sDWI at b-values of 1000 and 1500 s/mm2 (sDWI1000 and sDWI1500). Qualitative analysis (normal glandular tissue suppression, overall image quality, and lesion conspicuity) was performed using a 4-point Likert-scale for all DWI sets and the cancer detection rate (CDR) was calculated. We also evaluated cancer-to-parenchyma contrast ratios for each DWI set in 45 patients with the lesion identified on any of the DWI sets. Statistical comparisons were performed using Friedman test, one-way analysis of variance, and Cochran's Q test. Results: All parameters of qualitative analysis, cancer-to-parenchyma contrast ratios, and CDR increased with increasing b-values, regardless of the type of imaging (synthetic or conventional) (p < 0.001). Additionally, sDWI1500 provided better lesion conspicuity than cDWI1500 (3.52 ± 0.92 vs. 3.39 ± 0.90, p < 0.05). Although cDWI1500 showed better normal glandular tissue suppression and overall image quality than sDWI1500 (3.66 ± 0.78 and 3.73 ± 0.62 vs. 3.32 ± 0.90 and 3.35 ± 0.81, respectively; p < 0.05), there was no significant difference in their CDR (90.0%). Cancer-to-parenchyma contrast ratios were greater in sDWI1500 than in cDWI1500 (0.63 ± 0.17 vs. 0.55 ± 0.18, p < 0.001). Conclusion: sDWI1500 can be feasible for evaluating breast cancers in clinical practice. It provides higher tumor conspicuity, better cancer-to-parenchyma contrast ratio, and comparable CDR when compared with cDWI1500.

The Evaluation and Fabrication of Radiation Phosphor Screen for Non-destructive Testing using the Special Room Temperature Gel-printing Method (상온 겔프린팅 기법을 이용한 비파괴 검사용 방사선 증감지 제작 및 평가)

  • Lee, Jun Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.391-396
    • /
    • 2020
  • In this study, we developed a phosphor film screen that can be applied to radiographs during non-destructive testing using Gd2O2S:Tb phosphor compounds. The image uniformity of the fabricated phosphor screen film was analyzed by FE-SEM, RMS and RDS analysis. In addition, the tensile strength, elongation, and modulus of elasticity of the Gd2O2S:Tb phosphor screen were evaluated by measuring the stress-strain characteristic curve. As a result, it was evaluated that the RSD value had an excellent image uniformity within 10% of the evaluation criteria. In addition, as a result of evaluation of physical properties, the tensile strength was 1.1760 N/㎟, the tensile strength at break was 1.1515 N/㎟. These results suggest that the Gd2O2S:Tb phosphor screen fabricated using the room temperature gel-printing method could be applied to digital radiography detectors for radiography.

Effective Image Super-Resolution Algorithm Using Adaptive Weighted Interpolation and Discrete Wavelet Transform (적응적 가중치 보간법과 이산 웨이블릿 변환을 이용한 효율적인 초해상도 기법)

  • Lim, Jong Myeong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.240-248
    • /
    • 2013
  • In this paper, we propose a super-resolution algorithm using an adaptive weighted interpolation(AWI) and discrete wavelet transform(DWT). In general, super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm is increased and it causes the increase of processing time. In the proposed algorithm, we first find high-frequency sub-bands by using DWT. Then we apply an AWI to the obtained high-frequency sub-bands to make them have the same size as the input image. Now, the interpolated high-frequency sub-bands and input image are properly combined and perform the inverse DWT. For the experiments, we use the down-sampled version of the original image($512{\times}512$) as a test image($256{\times}256$). Through experiment, we confirm the improved efficiency of the proposed algorithm comparing with interpolation algorithms and also save the processing time comparing with the probability based algorithms even with the similar performance.

Leukocyte Segmentation using Saliency Map and Stepwise Region-merging (중요도 맵과 단계적 영역병합을 이용한 백혈구 분할)

  • Gim, Ja-Won;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.239-248
    • /
    • 2010
  • Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.

Smartphone Digital Image Processing Method for Sand Particle Size Analysis (모래 입도분석을 위한 스마트폰 디지털 이미지 처리 방법)

  • Ju-Yeong Hur;Se-Hyeon Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.164-172
    • /
    • 2023
  • The grain size distribution of sand provides crucial information for understanding coastal erosion and sediment deposition. The commonly used sieve analysis for grain size distribution analysis has limitations such as time-consuming processes and the inability to obtain information about individual particle shapes and colors. In this study, we propose a grain size distribution analysis method using smartphone digital images, which is simpler and more efficient than the sieve analysis method. During the image analysis process, we effectively detect particles from relatively low-resolution smartphone digital images by extracting particle boundaries through image gradient calculation. Using samples collected from four beaches in Gyeongsangbuk-do, we compare and validate the proposed boundary extraction image analysis method with the analysis method that does not extract boundaries, against sieve analysis results. The proposed method shows an average error rate of 8.21% at D50, exhibiting a 65% lower error compared to the method without boundary extraction. Therefore, grain size distribution analysis using smartphone digital images is convenient, efficient, and demonstrated accuracy comparable to sieve analysis.

A New Characterizing Method for Recycled Paper and the Application of Image Segmentation on the Measurement Sub-visible Dirt

  • Dong, Shijin;Zhang, Haitao;Cui, Xuejun;Li, Junfeng;Wang, Hongyan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.11-19
    • /
    • 2008
  • The paper established a new method for fast measurement and characterizing of sub-visible dirt of recycled paper which is too small to be seen with naked eye. This method provided a new way for the evaluation of recycled paper that is hard to be characterized by the conventional method. Two effective thresholding algorithms HA and SDA were compared and their applicable conditions were discussed. Results showed that the HA could be used for un-printed paper while SDA is suited for recycled papers. The gloss of paper samples was measured and the relation between gloss and sub-visible dirt was investigated. The significant effect of this method for characterizing and comparing paper was exhibited. The experiment results indicated that sub-visible dirt measuring method could be a complementariness of the conventional methods.

Improved Image Clustering Algorithm based on Weighted Sub-sampling (Weighted subsampling 기반의 향상된 영상 클러스터링 알고리즘)

  • Choi, Byung-In;Nam, Sang-Hoon;Joung, Shi-Chang;Youn, Jung-Su;Yang, Yu-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.939-940
    • /
    • 2008
  • In this paper, we propose a novel image clustering method based on weighted sub-sampling to reduce clustering time and the number of clusters for target detection and tracking. Our proposed method first obtain sub-sampling image with specific weights which is the number of target pixels in sampling region. After performing clustering procedure, the cluster center position is properly obtained using weights of target pixels in the cluster. Therefore, our proposed method can not only reduce clustering time, but also obtain proper cluster center.

  • PDF

A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm (Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구)

  • 김대성;조영욱;한동엽;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF

Theoretical Study of Scanning Probe Microscope Images of VTe2

  • Park, Sung-Soo;Lee, Jee-Young;Lee, Wang-Ro;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.81-84
    • /
    • 2007
  • Ab initio periodic Hartree-Fock calculations with the full potential and minimum basis set are applied to interpretation of scanning tunneling microscope (STM) and atomic force microscope (AFM) images on 1TVTe2. Our results show that the simulated STM image shows asymmetry while the simulated AFM image shows the circular electron densities at the bright spots without asymmetry of electron density to agree with the experimental AFM image. The bright spots of both the STM and AFM images of VTe2 are associated with the surface Te atoms, while the patterns of bright spots of STM and AFM images are different.